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Challenges

Invented for P2P links and successful in
cellular settings, information theory is
inadequate for MANETs as it ignores:

bursty traffic, finite sessions/flows
queuing delay, energy limitations
overhead, hardware

Communication networking theory

neglects the interference structure
does not utilize the broadcast
property of the wireless channel
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Wireless Networks

Focus: High data rates, low or
moderate channel dynamics

unreliable shared radio channel

limited resources

⇒ Resource allocation and
interference management are
necessary.

Constraints Power Control

+

Strategies

Network Layer

Link Layer

Transmit/Receive

Physical Layer

System
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Quality of Service

User-centric approaches (inelastic applications):

Satisfy strict QoS requirements of applications permanently.

Network-centric approaches (elastic applications):

Maximize the aggregate utility as perceived by the network operator.
Address the issue of fairness.

QoS link 1

QoS link 2
max-min fairness

max
∑

k QoSk

max
∑

k wkQoSk

minimum total power

Feasible QoS region
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The Focus

Single-hop communication with K > 1 logical links (users)

Concurrent transmissions

Single-user decoding

Individual power constraints p̂ = (p̂1, . . . , p̂K)

Multiple antenna elements

Single data stream per link

Combination with routing and network coding strategies possible.

The focus of this talk: Joint power control and beamforming for resource
allocation and interference management.
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Part I

Arbitrary but Fixed Channels
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S lawomir Stańczak () May 29, 2013 8 / 109



Feasible Utility Set: F

Given a channel, F is the set of all utility (or QoS) values that can be achieved by
means of power control with all links being active concurrently.

η2

feasible point

η1

F

infeasible point

QoS link 1

Q
oS

lin
k

2

Assumption: ηk ↑ ⇔ QoS ↑
Downward-comprehensive
Upper-bounded

may be non-convex.

depends on power constraints P.

F depends on the physical-layer realization: Key properties of many multiuser
systems are captured by interference functions.
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Signal-to-Interference(+noise) Ratio (SIR)

Strictly monotonic Utility-SIR map: γ : R→ R+

For any η ∈ F, there is a power vector p = (p1, . . . , pK) ∈ P such that

γ(ηk) = SIRk(p) =
pk

Ik(p)

← transmit power

← interference function

e.g. Gaussian capacity (in nats/channel use): γ(x) = ex − 1, x ≥ 0.
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Axiomatic Interference Framework

Standard Interference Functions (SIF), Yates’95

A1 Positivity: Ik(p) > 0 for all p ≥ 0.

A2 Scalability: Ik(µp) < µIk(p) for any p ≥ 0 and for all µ > 1.

A3 Monotonicity: Ik(p(1)) ≥ Ik(p(2)) if p(1) ≥ p(2).

Interference functions depend on the choice of beamformers.

The framework captures many practical interference scenarios.
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Interference Functions: Examples and Focus

Linear interference function

Ik(p) = (Vp + z)k
Matched-filter receiver
SIC receiver

Minimum interference function

Ik(p) = minuk∈Zk(V(u)p + z(u))k
MMSE receiver
Optimal beamforming

QoS 3

QoS 1

2

1

2 3

3

1

interference

QoS 2

V1,2

V1,1

V = (vk,l) = (
Vk,l
Vk,k

)

V ≥ 0: non-symmetric, traceless

u(3)
u(2)

u(1)

u(4)

Q
oS

lin
k

2

QoS link 1

F
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Beamforming

Signal-to-Interference(+noise) Ratio (SIR)

SIRk =
pk|rHk H(k,k)xk|2∑

l 6=k
|rHk H(k,l)xl|2pl + ‖rk‖22σ2

=
pk∑

l 6=k

Vk,l
Vk,k

pl + σk
=

pk
Ik(p)

xk: TX beamformer of user k

rk: RX beamformer of user k
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Problem Statement

Problem (QoS-based power control under SIFs)

p(η) = arg min
p∈P(η)

wTp
w > 0

P(η) :=
{
p ∈ RK+ : ∀k SIRk(p) ≥ γ(ηk)

}
.

Minimum total power

QoS link 1

η2

η1

QoS link 2

Feasible QoS region

p2

p1

p2 = γ2I2(p)

p(η) is the minimum point of P(η)

p1 = γ1I1(p)

Valid power set

Zander’92, Foschini’94, Yates’95, Ulukus’98, Bambos’00, Boche&Schubert ...
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Fixed-Point Iteration, Yates’95

Fixed-Point Existence, Uniqueness and Convergence

Let I(p) = (γ1I1(p), . . . , γKIK(p)) be any SIF for some γk ≡ γ(ηk) > 0. If there
is p > 0 such that p ≥ I(p), then

1 Fix(I) = {p > 0 : I(p) = p} 6= ∅ is singleton and

2 the fixed-point iteration

p(n+ 1) = I(p(n)), for some p(0) ≥ 0

converges to the unique fixed point p(η) = p̄ = I(p̄).

Component-wise increasing (decreasing) if p(0) = 0 (p(0) ∈ P(η)).

Amenable to distributed implementation, scalable, works for any SIF.

Asynchronous operation possible.

But how should new users join the network without disrupting the
connections of active users?
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Admission Control Scheme

User k is called active at time n if SIRk(p(n)) ≥ γk.

Define An to be the set of all active users at time n and Bn := K \ An.

Power control with active link protection (δ > 1)

pk(n+ 1) =

{
δ γkIk(p(n)) k ∈ An (active users)

δ pk(n) = δn+1pk(0) k ∈ Bn (inactive users)

δ > 1 can be interpreted as protection margin.

the larger δ, the faster power-up of the inactive users.
δ cannot be too large for all users to be fully admissible.

Bambos’00, Chee Wei Tan’09 (only Ik(p) = (Vp + z)k)
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Properties of the admission control scheme

Theorem
Let Ik be any standard interference function. Then,

All SIRs converge to some values.

All users are admitted in finite time if γ = (γ1, . . . , γK) is feasible.

Transmit powers are bounded if and only if δ · γ is feasible.

Active users (k ∈ An):

Preservation of active users: An ⊆ An+1.
Bounded power overshoot: pk(n+ 1) < δpk(n).

Inactive users (k ∈ Bn):

SIRs of inactive users are increasing SIRk(p(n)) < SIRk(p(n+ 1)).

Stanczak&Kaliszan&Bambos’09
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No power constraints, TX and RX beamforming
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user active at n = 0
user inactive at n = 0
common SIR target

T.x: Transceiver optimization phases
A.x: Admission control phases

A.1

n

S
IR

K = 10, nT = nR = 4, γ = 8, δγ = 9.6, An = {1, . . . , 5}
The highest feasible SIR (example):

0.88 (fixed beamformers), 1.37 (RX beamforming), 8 (TX/RX beamforming)
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Incorporating power constraints

Theorem
Suppose that δγ is feasible and

p(m) ≤ βδI
(
p(m))

holds for some m ∈ N0 and β ∈ [1, βmax]. Then, there exists βmax > 1 such that
An ⊆ An+1 for all n ≥ m.

Active users send distress signals until the condition is satisfied.

Stanczak&Kaliszan&Bambos’09
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Energy-Efficient Relaying using Rateless Codes

Ravanshid&Lampe&Huber’11

Half-duplex mode

synchronous operation mode

Frequency-flat AWGN channels

For nodes P,Q ∈ {S,D,R1, . . . ,RM},
gPQ ∈ C denotes the SNR at node Q when
node P transmits with unit power.

gPQ are known at all nodes.

n is the total number of time slots until the destination decodes the message

N ≤M is the number of relays that decoded the message during this time.

nm denotes the number of time slots until Rm decodes the message.

The time fraction during which relay Rm listens to the source transmission is
given by λm = nm

n , whereas the transmission rate is R = k
n .
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Optimal Rate

Let C(x) = log(1 + x), C0 = C(pSgSD) and Cm = C(pSgSRm) for m ∈ {1, . . . , N}
for the capacities of the links originating from the source node S. Then,

Ji = C
(
pSgSD +

i∑
j=1

rjpjgRjD

)
+

i∑
j=1

C
(
(1− rj)pjgRjD

)
for the collaborative capacity of relays R1, . . . ,Ri, the optimal rate is (given N)

RN (P) =
JN

1− C0

C1
+
∑N−1
m=1

(
1
Cm
− 1

Cm+1

)
Jm + JN

CN

.

Definition (Optimal rate)

For any p, we define R(p) := RN(p)(p) where

N(p) = max{m ∈ {1, . . . ,M} : λm ≤ 1} is the optimal number of decoding
relays (in the sense of maximizing the rate).
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Problem Formulation

For the power allocation p at the relays, the quantities

ERm(p) =
(1− λm(p))pm

R(p)
for m ∈ {1, . . . , N(p)}. (1)

measure the energy spent for each transmitted bit at each relay node Rm.

Given γRm > 0,m ∈ {1, . . . , N}, maximize the transmission rate subject to
the constraints on the energy-per-bit usage at the relay nodes Rm.

Problem (Problem 1)

maximize
p∈RM++

R(p)

subject to ERm(p) ≤ γRm ,m ∈ {1, . . . , N(p)}.

Buehler&Stanczak’13
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Relaxed Problem

Problem 1a

maximize
p∈RM++

R(p)

subject to ÊRm(p) ≤ γRm ,m ∈ {1, . . . ,M}.

where
ÊRm(p) =

pm
R(p)

for m ∈ {1, . . . ,M} . (2)

Proposition (Buehler&Stanczak)

The function R is a standard interference function in the relay powers p.
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Algorithmic Solution

Corollary

If Problem 1a is feasible for the Eb constraints γRm > 0,m ∈ {1, . . . , N}, then
the algorithm

p(n+ 1) = (γR1R(p(n)), . . . , γRMR(p(n)))

converges to the optimal solution of Problem 1a, which is also a feasible (but
generally suboptimal) power allocation for Problem 1.

Buehler&Stanczak’13
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Positive Concave Functions

It may be difficult to show the axioms, while concavity can be easily to verify.

In such cases, the following proposition may be useful.

Proposition (Cavalcante’13)

If I(p) > 0 is concave in p > 0, then the map is a standard interference function.

Example: The load in LTE systems can be shown to be a fixed point of some
positive and concave function. The axiomatic framework for standard
interference functions can be used to

show the existence and uniqueness of a fixed point,
check feasibility of different SON configurations,
compute the load vector by means of the fixed-point algorithm.

Cavalcante&Pollakis&Stanczak’13
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Problem statement

max min
k

SIRk = max min
k

pk
Ik(p)

∀kpk ≤ p̂k

1 Power control for any fixed TX and RX beamformers [Aein ’73,...]

Ik(p) = (Vp + σ)k,V ≥ 0,V 6= VT

2 Joint power control and RX beamforming [Zander ’01,... ]

Ik(p) = minr(V(r) · p + σ(r))k
3 Joint power control and transceiver optimization [e.g. Chang et al. ’02,

Stanczak et al. ’08]

Monotonicity and convergence due to power control
Similar approach achieves interference alignment [Gomadam et al. ’08]
Extensions to general MIMO [Sezgin,Stanczak’11]
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Max-Min SINR vs. Max SINR of [Gomadam et al. ’08]

10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

Iter

S
IN

R

 

 

User 1, w/o SPC

User 2, w/o SPC

User 3, w/o SPC

User 4, w/o SPC

User 1, w/ SPC

User 2, w/ SPC

User 3, w/ SPC

User 4, w/ SPC

 User 1

 User 2

 User 4

 User 3

K = 4, NTX = 3, NRX = 2

How to solve the power control part in a distributed manner?

Solution is a positive eigenvector of some irreducible matrix.
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An alternative problem formulation

Instead of maximizing mink SIRk(p), consider

p∗ = arg min
p∈P

∑
k
wkθ

( pk
Ik(p)

)

u = (θ(SIR1), . . . , θ(SIRK))

θ is concave and strictly decreasing

Compute w∗ in parallel to p∗!

maxη∈F(P)w
Tη

w

−θ(SIR1)

−θ(SIR2)

max-min fairness

w∗
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Convexity of Utility Set

feasible SINR region

w

F

−θ(SIR1)

−
θ(

S
IR

2
)

η∗

γ(x) = x, x > 0

S
IR

2

SIR1

θ(x) = γ−1(x)

Specify a class of θ so that F is a convex set.
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Characterization of Utility Set

Theorem

u is feasible (u ∈ U) if and only if

max
k

ρ(D(u)Gk) ≤ 1

D(u) = diag(γ(u1), . . . , γ(uK))

γ(x) = θ−1(x)

Gk = V + 1
p̂k

zeTk

à Perron-Frobenius theory.
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One Slide Tutorial on Theory of Nonnegative Matrices

B =
(0 1
0 0

) {0, 0}
{(1, 0), (0, 0)}

ρ(B) = 0

nonnegative eigenvector

B =
(0 1
1 0

) {1,−1}
{(1, 1), (1,−1)}

ρ(B) = 1 (simple)

positive eigenvector

B =
(0 1
1 1

) { 1
2
(1 +

√
5), 1

2
(1−

√
5)}

{(λ1 − 1, 1), (λ2 − 1, 1)}
|λ2| < ρ(B) (simple)

positive eigenvector

B =
(1 0
0 a

)
B =

(1 0
0 1

)
???

Irreducibility plays a crucial role (closed under summation)

Many applications: algebraic graph theory, FMC, stochastic matrices ...

Does x = Bx + b,b ≥ 0, have a positive solution?

Books of Seneta, Minc, Gantmacher,...
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A Useful Spectral Radius Characterization

Theorem (Arnold, Gundlach, Demetrius ’94)

Let B = (xk,l) ≥ 0 be irreducible. Then,

log ρ(B) = sup
A∈A(B)

(∑
k,l

qkak,l log
bk,l
ak,l

)

where q = (q1, . . . , qK) ∈ Π+
K is the left Perron eigenvector of A = (ak,l).

à Useful bounds like ρ(X ◦Y) ≤ ρ(X)ρ(Y).
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A Sufficient Convexity Condition

Theorem

ρ(D(u)Gi) is log-convex for each i if D(u) is log-convex in u or, equivalently, if
γ is a log-convex function.

γ(x) = θ−1(x) is log-convex if and only if θ(ex) is convex.

Corollary

The following holds:

ρ(D(u)Gi) is log-convex for each i if θ(ex) is convex.

The utility set is convex if θ(ex) is convex.
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A Necessary Convexity Condition

Theorem

If ρ(D(u)G) is convex for any irreducible nonnegative matrix G, then θ(ex) is
convex.

The theorem implies that if the spectral radius ρ(D(u)Gi), 1 ≤ i ≤ K, which
determines the feasible utility set, is required to be a convex function of u for
any interference coupling (channel realization), then θ must be chosen such
that θ(ex) is convex.

à Log-convexity of γ(x) seems to be essential for the utility maximization
problem to be tractable and solvable in an efficient way.

S lawomir Stańczak () May 29, 2013 41 / 109



Examples of Function Classes

Ψα(x) =

{
x1−α

1−α α > 1

log(x) α = 1
Ψ̃α(x) =


log x α = 1

log x
1+x α = 2

log x
1+x +

α−2∑
j=1

1
j(1+x)j α > 2
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Max-Min Rate Allocation

Arbitrarily Close Approximation

Let η∗k = Ψα(SIR∗k) and let ν∗k = log(1 + SIR∗k). Then, ν∗ converges to the
max-min rate allocation as α→∞.

8

8.2

8.42.4

1.8

1 6 11 16

S
ou

rc
e

R
at

es

α

Flow 1

Flow 2 Flow 3 Flow 4

Sum of Source Rates
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Utility-Based Power Control

Equivalent minimization problem

p∗ = arg min
p∈P

F (p) = arg min
p∈P

∑
k
wkθ

(
SIRk(p)

)
.

Positivity of minimizers: p∗ > 0

Even if θ(ex) is convex, the problem is not convex in general.
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Convex Statement of the Problem

Theorem

If Ik(es) is log-convex and θ(ex) convex, the following problem is convex:

s∗ = arg min
s∈S

Fe(s)


s := log p,p > 0

S := {log x : x ∈ P+}
Fe(s) = F (es)

Ik(es) =
∑
l vk,le

sl + zk is log-convex (Hoelder inequality).

Log-convexity is given in the worst-case design.
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Gradient-Projection Algorithm

Let τ > 0 be constant step size (small enough), and let

s(n+ 1) = ΠS

[
s(n)− τ∇Fe(s(n))

]
s(0) ∈ S

∇Fe(s) = diag(es1 , . . . , esK )∇F (es):

∇F (p) = (I−VTΓ(p))g(p)

gk(p) = wkθ
′(SIRk(p))SIRk(p)/pk (locally available)

Γ(p) = diag(SIR1(p), . . . , SIRK(p))
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Computation of the Gradient Vector

∇F (p) = (I + Γ(p))g(p)︸ ︷︷ ︸
local variable

− (I + VT )Γ(p)g(p)︸ ︷︷ ︸
global variable

Problem is to obtain Σk(p) =
∑
l vl,kml(p),ml(p) = gl(p)SIRl(p).

Distribute ml using a flooding protocol (What about vl,k ?).
Estimate the sum Σk using an adjoint network.
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The Notion of an Adjoint Network

Definition
Two networks with K links and gain matrices V1 and V2 are referred to as being
adjoint (to each other) if V1 = VT

2 .

Reverse the roles of transmitter and receivers is not sufficient

V1 = DG︸ ︷︷ ︸
primal network

V2 = DGT︸ ︷︷ ︸
reversed network

V1 6= VT
2

à In addition, each user in the reversed network needs to inverse its channel:

V1 = DG︸ ︷︷ ︸
primal network

V2 = GTD︸ ︷︷ ︸
adjoint network

V1 = VT
2

D = diag( 1
V1,1

, . . . , 1
VK,K

)

G = (Vk,l) if k 6= l and (G)k,k = 0.
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Adjoint Networks: A Simple Example

Primal network

V1 =

 0
|h1,2|2
|h1,1|2

|h2,1|2
|h2,2|2 0


h1,1

h1,2

h2,2

h2,1

S1

S2

E1

E2

Primal Network
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Adjoint Networks: A Simple Example

Primal network

V1 =

 0
|h1,2|2
|h1,1|2

|h2,1|2
|h2,2|2 0


Reversed network + Xk/hk,k

V2 =

 0
|h2,1|2
|h2,2|2

|h1,2|2
|h1,1|2 0



h1,1

h2,2

h2,1

h1,2

S2

S1 E1

E2

Adjoint Network

The message mk is contained in the
transmit power
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Alternate Use of Primal and Adjoint Networks

1 Concurrent transmission of training sequences at powers pk(n), k ∈ K.

2 Receiver side estimation of SIRs and interferences. The receivers calculate
gk(p(n)), k ∈ K, and feed the SIRs back to the transmitters using a control
channel. Transmitter-side computation of gk(p(n)).

3 Concurrent transmission over the adjoint network of zero-mean random symbols at
powers |SIRk(p(n)) · gk(p(n))|, k ∈ K.

4 Transmitter side estimation of the received power and subtraction of noise variances
from the estimates. The transmitters compute

∇kF (p(n)) = gk(p(n))− (VTΓ(p(n))g(p(n)))k

5 Update of transmit powers with s(n) = log p(n);n→ n+ 1.
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Noisy Measurements

Only noisy observations are available:

∆k(n) = ∇kF (p(n)) + δMk(n)︸ ︷︷ ︸
estimation noise

Analysis in the framework of stochastic approximation.

Use a diminishing step size {τ(n)}, τ(n) > 0 [Kushner’03]:

non-increasing sequence with limn→∞ τ(n) = 0∑∞
n=0 τ(n) =∞.

Common assumption:
∑∞

n=0 τ(n)2 < +∞.

To improve the initial convergence rate, one may utilize averaging of iterates
in parallel to the stochastic recursion [Polyak’92].
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Noisy Measurements: Simulations
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An Alternative Algorithmic Approach

Gradient projection algorithm

Advantages: simplicity, monotonicity
Disadvantages: step size, only linear convergence rate, projection

An alternative approach: Conditional Newton iteration for finding stationary
points of a modified Lagrangian function.
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Min-max reformulation

min
s,t

max
u

∑
k
wkθ

(esk
uk

)
subject to


es − p̂ ≤ 0 ⇔ s ∈ S

u− t ≤ 0

∀k Ik(es)− tk = 0 .

Linear interference function: Ik(es) = (Ves + z)k.

The Hessian is diagonal and its diagonals are given by the gradient.

Use theory of max-min/convex-concave functions and theory of non-linear
Lagrangians to improve the convergence speed/rate.
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Conditional Newton Algorithm


(

s(n+ 1)

µ(n+ 1)

)
=

(
s(n)

µ(n)

)
− (∇2

(s,µ)L(z(n)))
−1∇(s,µ)L(z(n))

∇(u,λu,λ,t)L(z(n+ 1)) = 0 can be solved explicitely

L(z) = L(s,u,µ,λu,λ, t): A nonlinear Lagrangian with no nonnegative
constraints on dual variables

R→ R+ : λ→ ψ(λ) with ψ(x) = x2, x ∈ R.

Theorem

The algorithm converges to a global optimum if θ(x) = − log(x) and θ(x) = 1/x.
The convergence rate is quadratic.
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A Comparison with a Gradient-Projection Algorithm

Advantages:

No step size control
Quadratic convergence rate
Unconstrained iteration
Distributed implementation possible
via adjoint network

Disadvantages:

Monotonicity is not guaranteed

K = 50

Ψ(x) = − log(x)

Conditional Newton

Gradient projection

20100
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Significantly better local convergence rate but no monotonicity.

S lawomir Stańczak () May 29, 2013 56 / 109



Incorporation of QoS requirements

Soft QoS Support

F̃α(p) =
∑
k∈A

akθα

(SIRk(p)

γk

)
︸ ︷︷ ︸

penalty term

+
∑
k∈B

bkθ
(
SIRk(p)

)
︸ ︷︷ ︸

aggregate utility

.

A: QoS users need to satisfy SIRk ≥ γk, k ∈ A
B: best-effort users

A \ B: pure QoS users (voice)
A ∩ B: best-effort users with QoS requirements (video)
B \ A: pure best-effort users (data)

Each user, say user k, determines its utility by choosing αk ≥ 1.
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Soft QoS Support: Example

γ2

Q
oS

of
P

ur
e

Q
oS

U
se

r
2

QoS of Best Effort User 1

A = 2

B = 1

1

3

2

1 - max-min-fairness

2 - Utility-based power control with α2 = 1

3 - Utility-based power control with soft QoS support, α2 →∞

2 3 as α2 →∞→
(no overshoot of user 2.)

Alternative: Suitable weighting achieves max-min fairness for any utilities.
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How to choose/compute the weights?

Theorem (Friedland, Karlin ’75, Boche, Stanczak ’04)

Let B ≥ 0 be irreducible, and let w = x ◦ y ∈ Π+
K . If θ(ex) is convex, then

∀s∈RK++

∑
k
wkθ

(
sk

(Bs)k

)
≥ θ(1/ρ(B))

Equality holds if s = x > 0. Moreover, if the equality holds in the optimum for
some weight vector z, then z = w.

The approach may not be meaningful for an algorithmic solution.

Compute w∗ iteratively in parallel to the power iteration.
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Collatz-Wielandt Characterization of the Perron Root

Theorem

Let B ≥ 0 be irreducible, and let θ(ex) be convex. Then, (x,w) ∈ RK++ ×Π+
K is

a saddle point:

θ(1/ρ(B)) = min max
s∈RK++ z∈Π+

K

∑
k

zkθ

(
sk

(Bs)k

)
= max min

z∈Π+
K s∈RK++

∑
k

zkθ

(
sk

(Bs)k

)
=
∑
k

wkθ

(
xk

(Bx)k

)

x > 0 is unique up to positive multiples,

w = y ◦ x is a unique vector in Π+
K = {x > 0,

∑
k xk = 1}.
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Max-min weight characterization

Theorem

Let p̄ and q̄ are principal right and left eigenvectors of B(k0). Let

w∗ = q̄ ◦ p̄ > 0 and

θ(ex) be convex in x ∈ R.

Then p∗ = p̄ (max-min fair power control).

The approach may not be meaningful for an algorithmic solution.

Compute w∗ iteratively in parallel to the power iteration.
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Saddle-point algorithm

Design a saddle-point power control algorithm that converges to (w∗, p̄).

p,w and the dual variables are iterated simultaneously.

Min-max formulation

min
s

max
w

∑
k
wkθ

( esk

Ik(es)

)
subject to

{
es − p̂ ≤ 0

‖w‖1 − 1 = 0,w ≥ 0 .

Theorem
A saddle-point algorithm operating on a classical linear constrained Lagrangian
converges to a global optimum that is a saddle point given by

max
u∈ΠK

min
s∈S

∑
k∈K

wkθ
( esk

Ik(es)

)
= min

s∈S
max
u∈ΠK

∑
k∈K

wkθ
( esk

Ik(es)

)
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Joint Power Control and RX Beamforming

Optimize RX beamformers alternately with (w,p)

Alternating optimization

Require: n = 0, rk(0) ∈ Uk, k ∈ K,p(0) ∈ P,u(0) ∈ Π+
K

1: repeat
2: n = n+ 1
3: p(n) = arg minp∈P maxu∈Π+

K
G(u,p,R(n− 1))

4: rk(n) = arg maxr∈Uk SIRk(p(n), r) ∀k
5: until termination condition is satisfied
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Convergence of the algorithm

Theorem
The proposed algorithm converges to a global optimum of the max-min SIR
balancing problem over the joint space of transmit powers and receive
beamformers.

What about transmit beamforming?

A big challenge mainly due to the lack of the uplink-downlink duality
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Power with TX and RX Beamforming

Swapping roles

(i) Given TX beamformers, perform joint power control and RX beamforming

(ii) Swap the roles of transmitters and receivers, and go to (i)

If QoS power control is applied pk(n+ 1) = Ik(p(n)), then

the scheme amenable to distributed implementation
each SIR increases monotonically
provides interference alignment for SNR→∞.
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The Worst-Case Performance
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Average Delay
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Part II

Time-Varying Channels
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Motivation

Typically, algorithms for distributed optimization assume that the
cost-function is fixed (i.e., it does not change during the iterations of the
algorithm).

However, in large-scale networks it may be unrealistic to solve
(approximately) each instance of the optimization problem whenever the cost
function changes.

Too much energy may be spent in coordination.
By the time one instance of the optimization problem is solved, the
optimization problem may have changed substantially.

Changing the cost function at each iteration in an ad-hoc fashion may lead to
unexpected results (even if there is a time-invariant solution).
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Basic Idea

Two-step Algorithmic Solution

1) Local optimization step: All nodes estimates the (same) parameter of
interest by optimizing their local functions

2) Consensus step: Nodes exchange and fuse some information to improve
their estimates. In each node the estimate resulting from cooperation should
be better than that obtained with the node working alone.

The information exchange is limited by the network topology.
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Diffusion Networks

The diffusion mode of cooperation

The nodes exchange information with their neighbors
No node has access to all information available to the network
Links are possibly unreliable
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Distributed Set-Theoretic Approaches

Each node constructs/updates one
or multiple sets in online fashion
from measurements and information
received from other nodes.

Additional sets are constructed from
a-priori knowledge.

The sets are constructed so that
their intersection contains an
optimal estimate.

Each node projects its estimate on
its local sets.

Information is exchanged for the
process to converge to or track a
common value in the intersection.
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online learned
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Projection onto closed convex sets (POCS)

Fundamental theorem of POCS  (Gubin et al. '67)

Let                                 denote                closed convex sets 
in a Hilbert space. Assume that
   

Then for every             , the sequence
 

where                                        converges weakly
to a point     of  
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Projection onto closed convex sets (POCS)

Fundamental theorem of POCS  (Gubin et al. '67)

Let                                 denote                closed convex 
sets in a Hilbert space. Assume that
   

Then for every             , the sequence
 

where                                        converges weakly
to a point     of  

Then for every             , the sequence
 

In a finite-dimensional Hilbert space 
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Geometric interpretation

S lawomir Stańczak () May 29, 2013 80 / 109



Geometric interpretation
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Geometric interpretation
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Projections vs relaxed projections
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Limitations of the POCS algorithms

The POCS theory assumes a finite number of closed convex sets.

The fundamental theorem of POCS cannot be applied to cases with
time-varying closed convex sets.

Time-varying sets are used to capture scenarios with time-varying channels.

In such cases we can use the adaptive projected subgradient method.

Yamada ’03,

Yamada and Ogura ’04

Slavakis, Yamada, and Ogura ’06
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Problem Statement

N agents generate a sequence of optimization problems indexed by i.

where

Local convex function known 
by agent k (private information)

1

2

3

4
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Assumptions (1)

1 2 3

● Each agent has its own estimate           of a minimizer of the global 
function:

● At each time i, the local functions have a common (nonempty) set of 
minimizers

Common minimizers of the local functions
(minimizers of          ) 

April 17, 2012Slawomir Stanczak and Renato L. G. Cavalcante
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Assumptions (2)

● (time structure) The global functions                                have minimizers in 
common

1 2 3

Time-invariant  minimizers
.
.
.

As a result, there exists                that is a minimizer of every local function        
and every global function          at any time instant i... 
===> We should find, at every node, a point that minimizes infinitely many 
global functions 
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Adaptive Projected Subgradient Method (1)

May 25, 2013 38

● Step 1) Apply a particular version of the adaptive projected 
subgradient method in each node [Yamada and Ogura' 04]

Step size

A subgradient

Small constant

● Step 2) Information exchange 

Neighbors of agent k
Random matrices satisfying properties
of consensus matrices
(very easy to construct!)

1 2 3

Agent 

(I assume to be 0 in the following)
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Adaptive Projected Subgradient Method (2)

May 25, 2013 39

Neighbors of agent k
Random matrices 

1 2 3

If 

(a projection matrix)

39
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Adaptive Projected Subgradient Method: Convergence

Theorem (Cavalcante et al. 2009, Cavalcante et al. 2011)
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Noisy Information Exchange

So far we have assumed noiseless information exchange.

This ignores the presence of noise in the case of analog computation schemes.

Recently we have extended the APSM to cope with noisy communication in
the consensus step (corrupted by additive noise).

The framework of stochastic approximation was used to dampen the effects of
noise (by a sequence of decreasing step sizes).

Under some mild conditions, the algorithm was shown to converge almost
surely.

Cavalcane and Stanczak ’13
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Empirical Evaluation (Signal Detection)

20 nodes distributed uniformly at random in a unit grid

Nodes are neighbors if their Euclidean distance is less or equal than√
log(N)/N

Noise i.i.d with pdf f = (1− β)N (0, ν2) + βN (0, κν2)
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Motivation

Distributed signal detection methods use consensus algorithms as a building
block.

Traditional consensus algorithms (gossip algorithms) can be too slow in
practice.

Existing acceleration techniques are often insufficient.
Most algorithms deal with the average consensus problem.

Other non-linear functions are of interest (e.g. maximum, geometric mean).

Approach

harness interference for computations.
Find appropriate function representations.
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f -Consensus

f -Consensus Problem

Each sensor node attempts to compute f(x1, . . . , xn) as fast as possible.

Randomized Gossiping
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Figure: 3 Clusters, 16 nodes, “Arithmetic Mean”

M. Zheng and M. Goldenbaum and S. Stanczak and H. Yu, “Fast Average Consensus in Clustered

Wireless Sensor Networks by Superposition Gossiping”, IEEE WCNC, 2012.
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Computation over MAC (CoMAC)

Problem: Compute a function f

Typically transmissions are orthogonalized to
combat interference

Cluster head reconstructs each sensor signal
separately and subsequently computes f

but it also destroys information!
Too much information sent!

Separating communication and computation
can be highly inefficient. [Nazer,Gastpar ’07]

Can we merge data transmission and function
computation into one step?

Yes, as the broadcast property can be exploited
to merge the processes of computation and
communication. [Stanczak et al. ’06]
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Analog Computation via MAC

We developed a coding scheme to efficiently compute some functions. It
requires only coarse synchronization and channel magnitudes at the
transmitters
calls for little CSI if multiple antenna elements are used at the sink.

Each sensor node transmits concurrently a sequence of independent random
symbols

transmit power is controlled by sensor reading
fading effects are corrected through channel inversion, scaling and multiple
antenna techniques at the sink.

Sink estimates the function value from the received energy.

The scheme can be used in connection with any cluster-based consensus
algorithm to reach average consensus. (no proof of convergence)

If average consensus can be reached, then it is possible to attain consensus
on any function, provided that

1 the sensor reading are suitably pre-processed and
2 some post-processing is applied to the average consensus.

M. Goldenbaum, S. Stanczak, “Robust Analog Function Computation via Wireless Multiple-Access

Channels”, submitted journal version, 2012 (available at arXiv).
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1 the sensor reading are suitably pre-processed and
2 some post-processing is applied to the average consensus.

M. Goldenbaum, S. Stanczak, “Robust Analog Function Computation via Wireless Multiple-Access

Channels”, submitted journal version, 2012 (available at arXiv).
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Analog Computability

Wireless MAC

y =

N∑
i=1

hixi + v (∗)

⇒ We can estimate any function having a representation (∗).

Examples:

Arithmetic Mean: f(x1, . . . , xN ) = 1
N

∑
i xi, ϕi(x) = x, ψ(y) = 1

N
y

Geometric Mean: f(x1, . . . , xN ) =
(∏

i xi
)1/N

, ϕi(x) = log(x),
ψ(y) = exp(y/N)
Euclidean Norm: f(x1, . . . , xN ) =

√
x21 + · · ·+ x2N , ϕi(x) = x2, ψ(y) =

√
y

Every function is universally computable via an ideal MAC, since every
f : [0, 1]N → R has a representation (∗).

M. Goldenbaum, H. Boche, S. Stanczak, “Harnessing Interference for Analog Function Computation in

Wireless Sensor Networks”, submitted, 2012.
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Analog Computation via Signal Powers (Numerical
Examples)

Performance Measure: |E| =
∣∣∣ f̂−f
fmax−fmin

∣∣∣
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Estimation/Computation of non-linear functions by transmission-side data
pre-processing and receiver-side signal post-processing.
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Eliminating Fading Effects using Multiple Antenna Systems

SIMO: A correction of fading effects at the sink is possible.

Simulation: K = 25, uncorrelated Rician fading: H
(m)
nk ∼ NC(0.5, 0.75)
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Ongoing work/Open problems

Construction/offline computation of pre- and post-processing functions.

Robustness against practical impairments like fading and noise (in networks)

Thank you!
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S lawomir Stańczak () May 29, 2013 106 / 109



References

D.P. Bertsekas.

Nonlinear Programming.
Athena Scientific, Belmont, Massachusetts, 1995.

H. Boche and S. Stanczak.

Convexity of some feasible QoS regions and asymptotic behavior of the minimum total power in CDMA
systems.
IEEE Trans. on Comm., 52(12):2190 – 2197, December 2004.

H. Boche and S. Stanczak.

Log-convexity of the minimum total power in CDMA systems with certain quality-of-service guaranteed.
IEEE Trans. on Inform. Theory, 51(1):374–381, January 2005.

M. Chiang.

Balancing transport and physical layers in wireless multihop networks: Jointly optimal congestion control
and power control.
IEEE Journal on Selected Areas in Communications, 23(1):104–116, Jan. 2005.

Stanczak S, Wiczanowski M, Boche H.

Distributed Utility-Based Power Control: Objectives and Algorithms.
IEEE Trans Signal Processing. 2007 Oct;55(10):5058–5068.
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