Distributed Interference Management and Identification for Wireless Networks

Sławomir Stańczak

joint work with Holger Boche, Renato L. G. Cavalcante, Mario Goldenbaum

Technische Universität Berlin

Heinrich-Hertz-Lehrstuhl für Informationstheorie und theoretische Informationstechnik

and Fraunhofer Heinrich Hertz Institute Einsteinufer 37 10587 Berlin, Germany

May 29, 2013

Slawomir Stanczak

stanczak@ieee.org http://www.mk.tu-berlin.de/

Fraunhofer Heinrich Hertz Institute Berlin, Germany and Heinrich Hertz Chair for Information Theory and Theoretical Information Technology Faculty of EECS Technical University of Berlin

- Invented for P2P links and successful in cellular settings, information theory is inadequate for MANETs as it ignores:
 - bursty traffic, finite sessions/flows
 - queuing delay, energy limitations
 - overhead, hardware
- Communication networking theory
 - neglects the interference structure
 - does not utilize the broadcast property of the wireless channel

Wireless Networks

- Focus: High data rates, low or moderate channel dynamics
- unreliable shared radio channel
- limited resources

⇒ Resource allocation and interference management are necessary.

Quality of Service

- User-centric approaches (inelastic applications):
 - Satisfy strict QoS requirements of applications permanently.
- Network-centric approaches (elastic applications):
 - Maximize the aggregate utility as perceived by the network operator.
 - Address the issue of fairness.

- Single-hop communication with K > 1 logical links (users)
- Concurrent transmissions
- Single-user decoding
- Individual power constraints $\hat{\mathbf{p}} = (\hat{p}_1, \dots, \hat{p}_K)$
- Multiple antenna elements
- Single data stream per link
- Combination with routing and network coding strategies possible.
- The focus of this talk: Joint power control and beamforming for resource allocation and interference management.

Part I

Arbitrary but Fixed Channels

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control
- Other Applications of Interference Functions
- A Useful Sufficient Condition

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights
- Joint power control and receive beamforming
- Joint power control and transceiver optimization
- Simulations

Feasible Utility Set: F

Given a channel, $\rm F$ is the set of all utility (or QoS) values that can be achieved by means of power control with all links being active concurrently.

• F depends on the physical-layer realization: Key properties of many multiuser systems are captured by interference functions.

Strictly monotonic Utility-SIR map: $\gamma : \mathbb{R} \to \mathbb{R}_+$

For any $oldsymbol{\eta} \in \mathrm{F}$, there is a power vector $\mathbf{p} = (p_1, \dots, p_K) \in \mathrm{P}$ such that

$$\gamma(\eta_k) = \operatorname{SIR}_k(\mathbf{p}) = \frac{p_k}{I_k(\mathbf{p})} \quad \stackrel{\leftarrow}{\leftarrow} \text{ transmit power} \leftarrow \text{ interference function}$$

• e.g. Gaussian capacity (in nats/channel use): $\gamma(x) = e^x - 1, x \ge 0$.

Standard Interference Functions (SIF), Yates'95

- A1 Positivity: $I_k(\mathbf{p}) > 0$ for all $\mathbf{p} \ge 0$.
- A2 Scalability: $I_k(\mu \mathbf{p}) < \mu I_k(\mathbf{p})$ for any $\mathbf{p} \ge 0$ and for all $\mu > 1$.
- A3 Monotonicity: $I_k(\mathbf{p}^{(1)}) \ge I_k(\mathbf{p}^{(2)})$ if $\mathbf{p}^{(1)} \ge \mathbf{p}^{(2)}$.
 - Interference functions depend on the choice of beamformers.
 - The framework captures many practical interference scenarios.

Linear interference function

- $I_k(\mathbf{p}) = (\mathbf{V}\mathbf{p} + \mathbf{z})_k$
 - Matched-filter receiver
 - SIC receiver

Minimum interference function

$$I_k(\mathbf{p}) = \min_{u_k \in \mathrm{Z}_k} (\mathbf{V}(\mathbf{u})\mathbf{p} + \mathbf{z}(\mathbf{u}))_k$$

- MMSE receiver
- Optimal beamforming

Signal-to-Interference(+noise) Ratio (SIR) $SIR_{k} = \frac{p_{k} |\mathbf{r}_{k}^{H} \mathbf{H}^{(k,k)} \mathbf{x}_{k}|^{2}}{\sum_{l \neq k} |\mathbf{r}_{k}^{H} \mathbf{H}^{(k,l)} \mathbf{x}_{l}|^{2} p_{l} + ||\mathbf{r}_{k}||_{2}^{2} \sigma^{2}} = \frac{p_{k}}{\sum_{l \neq k} \frac{V_{k,l}}{V_{k,k}} p_{l} + \sigma_{k}} = \frac{p_{k}}{I_{k}(\mathbf{p})}$

- **x**_k: TX beamformer of user k
- \mathbf{r}_k : RX beamformer of user k

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control
- Other Applications of Interference Functions
- A Useful Sufficient Condition

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights
- Joint power control and receive beamforming
- Joint power control and transceiver optimization
- Simulations

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control
- Other Applications of Interference Functions
- A Useful Sufficient Condition

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights
- Joint power control and receive beamforming
- Joint power control and transceiver optimization
- Simulations

Problem (QoS-based power control under SIFs)

$$\mathbf{p}(\boldsymbol{\eta}) = \underset{\mathbf{p} \in \mathrm{P}(\boldsymbol{\eta})}{\operatorname{arg\,min}} \mathbf{w}^T \mathbf{p} \qquad \qquad \mathbf{w} > 0 \\ \mathrm{P}(\boldsymbol{\eta}) := \left\{ \mathbf{p} \in \mathbb{R}_+^K : \forall_k \operatorname{SIR}_k(\mathbf{p}) \ge \gamma(\eta_k) \right\}.$$

Zander'92, Foschini'94, Yates'95, Ulukus'98, Bambos'00, Boche&Schubert ...

Fixed-Point Existence, Uniqueness and Convergence

Let $\mathbf{I}(\mathbf{p}) = (\gamma_1 I_1(\mathbf{p}), \dots, \gamma_K I_K(\mathbf{p}))$ be any SIF for some $\gamma_k \equiv \gamma(\eta_k) > 0$. If there is $\mathbf{p} > 0$ such that $\mathbf{p} \ge \mathbf{I}(\mathbf{p})$, then

• Fix
$$(\mathbf{I}) = \{\mathbf{p} > 0 : \mathbf{I}(\mathbf{p}) = \mathbf{p}\} \neq \emptyset$$
 is singleton and

e the fixed-point iteration

 $\mathbf{p}(n+1) = \mathbf{I}(\mathbf{p}(n)), \quad \text{for some} \quad \mathbf{p}(0) \ge 0$

converges to the unique fixed point $\mathbf{p}(\boldsymbol{\eta}) = \bar{\mathbf{p}} = \mathbf{I}(\bar{\mathbf{p}}).$

- Component-wise increasing (decreasing) if $\mathbf{p}(0) = \mathbf{0}$ ($\mathbf{p}(0) \in P(\boldsymbol{\eta})$).
- Amenable to distributed implementation, scalable, works for any SIF.
- Asynchronous operation possible.
- But how should new users join the network without disrupting the connections of active users?

Fixed-Point Existence, Uniqueness and Convergence

Let $\mathbf{I}(\mathbf{p}) = (\gamma_1 I_1(\mathbf{p}), \dots, \gamma_K I_K(\mathbf{p}))$ be any SIF for some $\gamma_k \equiv \gamma(\eta_k) > 0$. If there is $\mathbf{p} > 0$ such that $\mathbf{p} \ge \mathbf{I}(\mathbf{p})$, then

• Fix
$$(\mathbf{I}) = \{\mathbf{p} > 0 : \mathbf{I}(\mathbf{p}) = \mathbf{p}\} \neq \emptyset$$
 is singleton and

e the fixed-point iteration

 $\mathbf{p}(n+1) = \mathbf{I}(\mathbf{p}(n)), \quad \text{for some} \quad \mathbf{p}(0) \ge 0$

converges to the unique fixed point $\mathbf{p}(\boldsymbol{\eta}) = \bar{\mathbf{p}} = \mathbf{I}(\bar{\mathbf{p}}).$

- Component-wise increasing (decreasing) if $\mathbf{p}(0) = \mathbf{0} \ (\mathbf{p}(0) \in P(\boldsymbol{\eta}))$.
- Amenable to distributed implementation, scalable, works for any SIF.
- Asynchronous operation possible.
- But how should new users join the network without disrupting the connections of active users?

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control
- Other Applications of Interference Functions
- A Useful Sufficient Condition

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights
- Joint power control and receive beamforming
- Joint power control and transceiver optimization
- Simulations

- User k is called active at time n if $SIR_k(\mathbf{p}(n)) \ge \gamma_k$.
- Define \mathcal{A}_n to be the set of all active users at time n and $\mathcal{B}_n := \mathcal{K} \setminus \mathcal{A}_n$.

Power control with active link protection ($\delta > 1$)

$$p_k(n+1) = \begin{cases} \delta \gamma_k I_k(\mathbf{p}(n)) & k \in \mathcal{A}_n \text{ (active users)} \\ \delta p_k(n) = \delta^{n+1} p_k(0) & k \in \mathcal{B}_n \text{ (inactive users)} \end{cases}$$

- $\delta > 1$ can be interpreted as protection margin.
 - the larger δ , the faster power-up of the inactive users.
 - δ cannot be too large for all users to be fully admissible.

Bambos'00, Chee Wei Tan'09 (only $I_k(\mathbf{p}) = (\mathbf{V}\mathbf{p} + \mathbf{z})_k)$

Theorem

Let I_k be any standard interference function. Then,

- All SIRs converge to some values.
- All users are admitted in finite time if $\gamma = (\gamma_1, \dots, \gamma_K)$ is feasible.
- Transmit powers are bounded if and only if $\delta \cdot \gamma$ is feasible.
- Active users $(k \in A_n)$:
 - Preservation of active users: $A_n \subseteq A_{n+1}$.
 - Bounded power overshoot: $p_k(n+1) < \delta p_k(n)$.

Inactive users $(k \in \mathcal{B}_n)$:

• SIRs of inactive users are increasing SIR_k(**p**(n)) < SIR_k(**p**(n + 1)).

Stanczak&Kaliszan&Bambos'09

No power constraints, TX and RX beamforming

•
$$K = 10, n_T = n_R = 4, \gamma = 8, \delta \gamma = 9.6, A_n = \{1, ..., 5\}$$

• The highest feasible SIR (example):

• 0.88 (fixed beamformers), 1.37 (RX beamforming), 8 (TX/RX beamforming)

Sławomir Stańczak ()

Theorem

Suppose that $\delta \gamma$ is feasible and

 $\mathbf{p}(m) \le \beta \delta \mathbf{I}(\mathbf{p}(m))$

holds for some $m \in \mathbb{N}_0$ and $\beta \in [1, \beta_{\max}]$. Then, there exists $\beta_{\max} > 1$ such that $\mathcal{A}_n \subseteq \mathcal{A}_{n+1}$ for all $n \ge m$.

• Active users send distress signals until the condition is satisfied.

Stanczak&Kaliszan&Bambos'09

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control

• Other Applications of Interference Functions

• A Useful Sufficient Condition

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights
- Joint power control and receive beamforming
- Joint power control and transceiver optimization
- Simulations

Energy-Efficient Relaying using Rateless Codes

Ravanshid&Lampe&Huber'11

- Half-duplex mode
- synchronous operation mode
- Frequency-flat AWGN channels
- For nodes $P, Q \in \{S, D, R_1, \dots, R_M\}$, $g_{PQ} \in \mathbb{C}$ denotes the SNR at node Q when node P transmits with unit power.
- g_{PQ} are known at all nodes.

 $\bullet \ n$ is the total number of time slots until the destination decodes the message

- $N \leq M$ is the number of relays that decoded the message during this time.
- n_m denotes the number of time slots until R_m decodes the message.
- The time fraction during which relay R_m listens to the source transmission is given by $\lambda_m = \frac{n_m}{n}$, whereas the transmission rate is $R = \frac{k}{n}$.

Optimal Rate

Let $C(x) = \log(1+x)$, $C_0 = C(p_S g_{SD})$ and $C_m = C(p_S g_{SR_m})$ for $m \in \{1, \ldots, N\}$ for the capacities of the links originating from the source node S. Then,

$$J_i = \mathcal{C}\left(p_{\mathsf{S}}g_{\mathsf{S}\mathsf{D}} + \sum_{j=1}^{i} r_j p_j g_{\mathsf{R}_j\mathsf{D}}\right) + \sum_{j=1}^{i} \mathcal{C}\left((1-r_j)p_j g_{\mathsf{R}_j\mathsf{D}}\right)$$

for the *collaborative capacity* of relays R_1, \ldots, R_i , the optimal rate is (given N)

$$R_N(\mathbf{P}) = \frac{J_N}{1 - \frac{C_0}{C_1} + \sum_{m=1}^{N-1} \left(\frac{1}{C_m} - \frac{1}{C_{m+1}}\right) J_m + \frac{J_N}{C_N}}$$

Definition (Optimal rate)

For any \mathbf{p} , we define $R(\mathbf{p}) := R_{N(\mathbf{p})}(\mathbf{p})$ where

• $N(\mathbf{p}) = \max\{m \in \{1, \dots, M\} : \lambda_m \leq 1\}$ is the optimal number of decoding relays (in the sense of maximizing the rate).

 \bullet For the power allocation ${\bf p}$ at the relays, the quantities

$$E_{\mathsf{R}_m}(\mathbf{p}) = \frac{(1-\lambda_m(\mathbf{p}))p_m}{R(\mathbf{p})} \text{ for } m \in \{1,\dots,N(\mathbf{p})\}.$$
(1)

measure the energy spent for each transmitted bit at each relay node R_m .

• Given $\gamma_{\mathsf{R}_m} > 0, m \in \{1, \ldots, N\}$, maximize the transmission rate subject to the constraints on the energy-per-bit usage at the relay nodes R_m .

Buehler&Stanczak'13

Problem 1a

where

$$\begin{aligned} \underset{\mathbf{p} \in \mathbb{R}_{++}^{M}}{\text{maximize } R(\mathbf{p})} \\ \text{subject to} \quad \widehat{E}_{\mathsf{R}_{m}}(\mathbf{p}) \leq \gamma_{\mathsf{R}_{m}} , m \in \{1, \dots, M\}. \\ \\ \widehat{E}_{\mathsf{R}_{m}}(\mathbf{p}) = \frac{p_{m}}{R(\mathbf{p})} \text{ for } m \in \{1, \dots, M\}. \end{aligned}$$

$$(2)$$

Proposition (Buehler&Stanczak)

The function R is a standard interference function in the relay powers \mathbf{p} .

Corollary

If Problem 1a is feasible for the Eb constraints $\gamma_{R_m} > 0, m \in \{1, ..., N\}$, then the algorithm

$$\mathbf{p}(n+1) = (\gamma_{R_1} R(\mathbf{p}(n)), \dots, \gamma_{R_M} R(\mathbf{p}(n)))$$

converges to the optimal solution of Problem 1a, which is also a feasible (but generally suboptimal) power allocation for Problem 1.

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control
- Other Applications of Interference Functions
- A Useful Sufficient Condition

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights
- Joint power control and receive beamforming
- Joint power control and transceiver optimization
- Simulations

- It may be difficult to show the axioms, while concavity can be easily to verify.
- In such cases, the following proposition may be useful.

Proposition (Cavalcante'13)

If I(p) > 0 is concave in p > 0, then the map is a standard interference function.

- Example: The load in LTE systems can be shown to be a fixed point of some positive and concave function. The axiomatic framework for standard interference functions can be used to
 - show the existence and uniqueness of a fixed point,
 - check feasibility of different SON configurations,
 - compute the load vector by means of the fixed-point algorithm.

Cavalcante&Pollakis&Stanczak'13

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control
- Other Applications of Interference Functions
- A Useful Sufficient Condition

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights
- Joint power control and receive beamforming
- Joint power control and transceiver optimization
- Simulations

$$\max\min_{k} \operatorname{SIR}_{k} = \max\min_{k} \frac{p_{k}}{I_{k}(\mathbf{p})} \quad \forall_{k} p_{k} \leq \hat{p}_{k}$$

Power control for any fixed TX and RX beamformers [Aein '73,...]

- $I_k(\mathbf{p}) = (\mathbf{V}\mathbf{p} + \boldsymbol{\sigma})_k, \mathbf{V} \ge 0, \mathbf{V} \neq \mathbf{V}^T$
- Ø Joint power control and RX beamforming [Zander '01,...]

• $I_k(\mathbf{p}) = \min_{\mathbf{r}} (\mathbf{V}(\mathbf{r}) \cdot \mathbf{p} + \boldsymbol{\sigma}(\mathbf{r}))_k$

- Joint power control and transceiver optimization [e.g. Chang et al. '02, Stanczak et al. '08]
 - Monotonicity and convergence due to power control
 - Similar approach achieves interference alignment [Gomadam et al. '08]
 - Extensions to general MIMO [Sezgin,Stanczak'11]

Max-Min SINR vs. Max SINR of [Gomadam et al. '08]

- How to solve the power control part in a distributed manner?
 - Solution is a positive eigenvector of some irreducible matrix.

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control
- Other Applications of Interference Functions
- A Useful Sufficient Condition

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights
- Joint power control and receive beamforming
- Joint power control and transceiver optimization
- Simulations

• Instead of maximizing $\min_k SIR_k(\mathbf{p})$, consider

$$\mathbf{p}^* = \arg\min_{\mathbf{p}\in\mathbf{P}} \sum_k w_k \theta\left(\frac{p_k}{I_k(\mathbf{p})}\right)$$

- $\mathbf{u} = (\theta(SIR_1), \dots, \theta(SIR_K))$
- θ is concave and strictly decreasing
- Compute \mathbf{w}^* in parallel to \mathbf{p}^* !

Convexity of Utility Set

• Specify a class of θ so that F is a convex set.

 \mathbf{u} is feasible ($\mathbf{u}\in\mathcal{U})$ if and only if

 $\max_k \rho(\mathbf{D}(\mathbf{u})\mathbf{G}_k) \le 1$

•
$$\mathbf{D}(\mathbf{u}) = \operatorname{diag}(\gamma(u_1), \ldots, \gamma(u_K))$$

•
$$\gamma(x) = \theta^{-1}(x)$$

•
$$\mathbf{G}_k = \mathbf{V} + \frac{1}{\hat{p}_k} \mathbf{z} \mathbf{e}_k^T$$

Perron-Frobenius theory.

One Slide Tutorial on Theory of Nonnegative Matrices

$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$	 {0,0} {(1,0), (0,0)} 	 ρ(B) = 0 nonnegative eigenvector
$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	 {1,-1} {(1,1),(1,-1)} 	 ρ(B) = 1 (simple) positive eigenvector
$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$	• $\{\frac{1}{2}(1+\sqrt{5}), \frac{1}{2}(1-\sqrt{5})\}$ • $\{(\lambda_1-1,1), (\lambda_2-1,1)\}$	• $ \lambda_2 < \rho(\mathbf{B})$ (simple) • positive eigenvector
	$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$???

- Irreducibility plays a crucial role (closed under summation)
- Many applications: algebraic graph theory, FMC, stochastic matrices ...
 - Does $\mathbf{x} = \mathbf{B}\mathbf{x} + \mathbf{b}, \mathbf{b} \ge 0$, have a positive solution?
- Books of Seneta, Minc, Gantmacher,...

Theorem (Arnold, Gundlach, Demetrius '94) Let \mathbf{B}_{-} (m, n > 0 be irreducible. Then

Let $\mathbf{B} = (x_{k,l}) \ge 0$ be irreducible. Then,

$$\log \rho(\mathbf{B}) = \sup_{\mathbf{A} \in \mathcal{A}(\mathbf{B})} \left(\sum_{k,l} q_k a_{k,l} \log \frac{b_{k,l}}{a_{k,l}} \right)$$

where $\mathbf{q} = (q_1, \dots, q_K) \in \Pi_K^+$ is the left Perron eigenvector of $\mathbf{A} = (a_{k,l})$.

Useful bounds like $\rho(\mathbf{X} \circ \mathbf{Y}) \leq \rho(\mathbf{X})\rho(\mathbf{Y})$.

 $\rho(\mathbf{D}(\mathbf{u})\mathbf{G}_i)$ is log-convex for each i if $\mathbf{D}(\mathbf{u})$ is log-convex in \mathbf{u} or, equivalently, if γ is a log-convex function.

• $\gamma(x) = \theta^{-1}(x)$ is log-convex if and only if $\theta(e^x)$ is convex.

Corollary

The following holds:

- $\rho(\mathbf{D}(\mathbf{u})\mathbf{G}_i)$ is log-convex for each *i* if $\theta(e^x)$ is convex.
- The utility set is convex if $\theta(e^x)$ is convex.

If $\rho(\mathbf{D}(\mathbf{u})\mathbf{G})$ is convex for any irreducible nonnegative matrix \mathbf{G} , then $\theta(e^x)$ is convex.

- The theorem implies that if the spectral radius $\rho(\mathbf{D}(\mathbf{u})\mathbf{G}_i), 1 \leq i \leq K$, which determines the feasible utility set, is required to be a convex function of \mathbf{u} for any interference coupling (channel realization), then θ must be chosen such that $\theta(e^x)$ is convex.
- Log-convexity of $\gamma(x)$ seems to be essential for the utility maximization problem to be tractable and solvable in an efficient way.

$$\Psi_{\alpha}(x) = \begin{cases} \frac{x^{1-\alpha}}{1-\alpha} & \alpha > 1\\ \log(x) & \alpha = 1 \end{cases} \quad \tilde{\Psi}_{\alpha}(x) = \begin{cases} \log x & \alpha = 1\\ \log \frac{x}{1+x} & \alpha = 2\\ \log \frac{x}{1+x} + \sum_{j=1}^{\alpha-2} \frac{1}{j(1+x)^j} & \alpha > 2 \end{cases}$$

Max-Min Rate Allocation

Arbitrarily Close Approximation

Let $\eta_k^* = \Psi_\alpha(\operatorname{SIR}_k^*)$ and let $\nu_k^* = \log(1 + \operatorname{SIR}_k^*)$. Then, ν^* converges to the max-min rate allocation as $\alpha \to \infty$.

Equivalent minimization problem

$$\mathbf{p}^* = \underset{\mathbf{p} \in \mathcal{P}}{\operatorname{arg\,min}} F(\mathbf{p}) = \underset{\mathbf{p} \in \mathcal{P}}{\operatorname{arg\,min}} \sum_k w_k \theta \left(\operatorname{SIR}_k(\mathbf{p}) \right).$$

- Positivity of minimizers: $\mathbf{p}^* > 0$
- Even if $\theta(e^x)$ is convex, the problem is not convex in general.

If $I_k(e^s)$ is log-convex and $\theta(e^x)$ convex, the following problem is convex:

$$\mathbf{s}^* = \underset{\mathbf{s}\in\mathbf{S}}{\operatorname{arg\,min}} F_e(\mathbf{s}) \qquad \begin{cases} \mathbf{s} := \log \mathbf{p}, \mathbf{p} > 0\\ \mathbf{S} := \{\log \mathbf{x} : \mathbf{x} \in \mathbf{P}_+\}\\ F_e(\mathbf{s}) = F(e^{\mathbf{s}}) \end{cases}$$

• $I_k(e^{\mathbf{s}}) = \sum_l v_{k,l}e^{s_l} + z_k$ is log-convex (Hoelder inequality).

• Log-convexity is given in the worst-case design.

• Let $\tau > 0$ be constant step size (small enough), and let

$$\mathbf{s}(n+1) = \Pi_{\mathrm{S}} \Big[\mathbf{s}(n) - \tau \nabla F_e(\mathbf{s}(n)) \Big] \qquad \mathbf{s}(0) \in \mathbb{S}$$

• $\nabla F_e(\mathbf{s}) = \operatorname{diag}(e^{s_1}, \dots, e^{s_K}) \nabla F(e^{\mathbf{s}})$:

$$\nabla F(\mathbf{p}) = (\mathbf{I} - \mathbf{V}^T \mathbf{\Gamma}(\mathbf{p}))\mathbf{g}(\mathbf{p})$$

g_k(**p**) = w_kθ'(SIR_k(**p**))SIR_k(**p**)/p_k (locally available)
Γ(**p**) = diag(SIR₁(**p**),...,SIR_K(**p**))

Computation of the Gradient Vector

$$\nabla F(\mathbf{p}) = \underbrace{(\mathbf{I} + \Gamma(\mathbf{p}))\mathbf{g}(\mathbf{p})}_{\text{local variable}} - \underbrace{(\mathbf{I} + \mathbf{V}^T)\Gamma(\mathbf{p})\mathbf{g}(\mathbf{p})}_{\text{global variable}}$$

• Problem is to obtain $\Sigma_k(\mathbf{p}) = \sum_l v_{l,k} m_l(\mathbf{p}), m_l(\mathbf{p}) = g_l(\mathbf{p}) \text{SIR}_l(\mathbf{p}).$

- Distribute m_l using a flooding protocol (What about $v_{l,k}$?).
- Estimate the sum Σ_k using an adjoint network.

Definition

Two networks with K links and gain matrices V_1 and V_2 are referred to as being adjoint (to each other) if $V_1 = V_2^T$.

• Reverse the roles of transmitter and receivers is not sufficient

In addition, each user in the reversed network needs to inverse its channel:

$$\underbrace{\mathbf{V}_1 = \mathbf{D}\mathbf{G}}_{\text{primal network}} \qquad \underbrace{\mathbf{V}_2 = \mathbf{G}^T \mathbf{D}}_{\text{adjoint network}} \qquad \mathbf{V}_1 = \mathbf{V}_2^T$$

•
$$\mathbf{D} = \operatorname{diag}(\frac{1}{V_{l,1}}, \dots, \frac{1}{V_{K,K}})$$

• $\mathbf{G} = (V_{k,l}) \text{ if } k \neq l \text{ and } (\mathbf{G})_{k,k} = 0.$

Adjoint Networks: A Simple Example

Adjoint Networks: A Simple Example

Primal network

$$\mathbf{V}_1 = \begin{pmatrix} 0 & \frac{|h_{1,2}|^2}{|h_{1,1}|^2} \\ \frac{|h_{2,2}|^2}{|h_{2,2}|^2} & 0 \end{pmatrix}$$

• Reversed network $+ X_k/h_{k,k}$

$$\mathbf{V}_2 = \begin{pmatrix} 0 & \frac{|h_{2,1}|^2}{|h_{2,2}|^2} \\ \frac{|h_{1,2}|^2}{|h_{1,1}|^2} & 0 \end{pmatrix}$$

Alternate Use of Primal and Adjoint Networks

- **(**) Concurrent transmission of training sequences at powers $p_k(n), k \in \mathcal{K}$.
- Preceiver side estimation of SIRs and interferences. The receivers calculate g_k(**p**(n)), k ∈ K, and feed the SIRs back to the transmitters using a control channel. Transmitter-side computation of g_k(**p**(n)).
- Ocncurrent transmission over the adjoint network of zero-mean random symbols at powers |SIR_k(**p**(n)) ⋅ g_k(**p**(n))|, k ∈ K.
- Transmitter side estimation of the received power and subtraction of noise variances from the estimates. The transmitters compute

$$\nabla_k F(\mathbf{p}(n)) = g_k(\mathbf{p}(n)) - (\mathbf{V}^T \mathbf{\Gamma}(\mathbf{p}(n)) \mathbf{g}(\mathbf{p}(n)))_k$$

() Update of transmit powers with $\mathbf{s}(n) = \log \mathbf{p}(n); n \to n + 1$.

• Only noisy observations are available:

$$\Delta_k(n) = \nabla_k F(\mathbf{p}(n)) + \underbrace{\delta M_k(n)}_{\text{estimation noise}}$$

- Analysis in the framework of stochastic approximation.
- Use a diminishing step size $\{\tau(n)\}, \tau(n) > 0$ [Kushner'03]:
 - non-increasing sequence with $\lim_{n\to\infty} \tau(n) = 0$

•
$$\sum_{n=0}^{\infty} \tau(n) = \infty.$$

- Common assumption: $\sum_{n=0}^{\infty} \tau(n)^2 < +\infty$.
- To improve the initial convergence rate, one may utilize averaging of iterates in parallel to the stochastic recursion [Polyak'92].

An Alternative Algorithmic Approach

- Gradient projection algorithm
 - Advantages: simplicity, monotonicity
 - Disadvantages: step size, only linear convergence rate, projection
- An alternative approach: Conditional Newton iteration for finding stationary points of a modified Lagrangian function.

$$\min_{\mathbf{s},\mathbf{t}} \max_{\mathbf{u}} \sum_{k} w_k \theta \left(\frac{e^{s_k}}{u_k} \right) \quad \text{subject to} \begin{cases} e^{\mathbf{s}} - \hat{\mathbf{p}} \leq 0 \iff \mathbf{s} \in \mathbf{S} \\ \mathbf{u} - \mathbf{t} \leq 0 \\ \forall_k I_k(e^{\mathbf{s}}) - t_k = 0 \,. \end{cases}$$

- Linear interference function: $I_k(e^{\mathbf{s}}) = (\mathbf{V}e^{\mathbf{s}} + \mathbf{z})_k$.
 - The Hessian is diagonal and its diagonals are given by the gradient.
- Use theory of max-min/convex-concave functions and theory of non-linear Lagrangians to improve the convergence speed/rate.

$$\begin{cases} \begin{pmatrix} \mathbf{s}(n+1) \\ \boldsymbol{\mu}(n+1) \end{pmatrix} = \begin{pmatrix} \mathbf{s}(n) \\ \boldsymbol{\mu}(n) \end{pmatrix} - (\nabla^2_{(\mathbf{s},\boldsymbol{\mu})} L(\mathbf{z}(n)))^{-1} \nabla_{(\mathbf{s},\boldsymbol{\mu})} L(\mathbf{z}(n)) \\ \nabla_{(\mathbf{u},\boldsymbol{\lambda}^u,\boldsymbol{\lambda},\mathbf{t})} L(\mathbf{z}(n+1)) = 0 \quad \text{can be solved explicitely} \end{cases}$$

• $L(\mathbf{z}) = L(\mathbf{s}, \mathbf{u}, \boldsymbol{\mu}, \boldsymbol{\lambda}^u, \boldsymbol{\lambda}, \mathbf{t})$: A nonlinear Lagrangian with no nonnegative constraints on dual variables

•
$$\mathbb{R} \to \mathbb{R}_+ : \lambda \to \psi(\lambda)$$
 with $\psi(x) = x^2, x \in \mathbb{R}$.

Theorem

The algorithm converges to a global optimum if $\theta(x) = -\log(x)$ and $\theta(x) = 1/x$. The convergence rate is quadratic.

A Comparison with a Gradient-Projection Algorithm

• Advantages:

- No step size control
- Quadratic convergence rate
- Unconstrained iteration
- Distributed implementation possible via adjoint network
- Disadvantages:
 - Monotonicity is not guaranteed

• Significantly better local convergence rate but no monotonicity.

Soft QoS Support

$$\tilde{F}_{\alpha}(\mathbf{p}) = \underbrace{\sum_{k \in \mathcal{A}} a_k \theta_{\alpha} \left(\frac{\mathrm{SIR}_k(\mathbf{p})}{\gamma_k}\right)}_{\text{penalty term}} + \underbrace{\sum_{k \in \mathcal{B}} b_k \theta \left(\mathrm{SIR}_k(\mathbf{p})\right)}_{\text{aggregate utility}}.$$

- \mathcal{A} : QoS users need to satisfy $\mathrm{SIR}_k \geq \gamma_k, k \in \mathcal{A}$
- B: best-effort users
 - $\mathcal{A} \setminus \mathcal{B}$: pure QoS users (voice)
 - $\mathcal{A} \cap \mathcal{B}$: best-effort users with QoS requirements (video)
 - $\mathcal{B} \setminus \mathcal{A}$: pure best-effort users (data)
- Each user, say user k, determines its utility by choosing $\alpha_k \ge 1$.

Soft QoS Support: Example

• Alternative: Suitable weighting achieves max-min fairness for any utilities.

Theorem (Friedland, Karlin '75, Boche, Stanczak '04)

Let $\mathbf{B} \ge 0$ be irreducible, and let $\mathbf{w} = \mathbf{x} \circ \mathbf{y} \in \Pi_K^+$. If $\theta(e^x)$ is convex, then

$$\forall_{\mathbf{s} \in \mathbb{R}_{++}^{K}} \; \sum\nolimits_{k} w_{k} \theta \left(\frac{s_{k}}{(\mathbf{B}\mathbf{s})_{k}} \right) \geq \theta(1/\rho(\mathbf{B}))$$

Equality holds if $\mathbf{s} = \mathbf{x} > 0$. Moreover, if the equality holds in the optimum for some weight vector \mathbf{z} , then $\mathbf{z} = \mathbf{w}$.

- The approach may not be meaningful for an algorithmic solution.
- Compute **w**^{*} iteratively in parallel to the power iteration.

Let $\mathbf{B} \ge 0$ be irreducible, and let $\theta(e^x)$ be convex. Then, $(\mathbf{x}, \mathbf{w}) \in \mathbb{R}_{++}^K \times \Pi_K^+$ is a saddle point:

$$\begin{aligned} \theta(1/\rho(\mathbf{B})) &= \min_{\mathbf{s} \in \mathbb{R}_{++}^{K}} \max_{\mathbf{z} \in \Pi_{K}^{+}} \sum_{k} z_{k} \theta\left(\frac{s_{k}}{(\mathbf{B}\mathbf{s})_{k}}\right) = \max_{\mathbf{z} \in \Pi_{K}^{+}} \min_{\mathbf{s} \in \mathbb{R}_{++}^{K}} \sum_{k} z_{k} \theta\left(\frac{s_{k}}{(\mathbf{B}\mathbf{s})_{k}}\right) \\ &= \sum_{k} w_{k} \theta\left(\frac{x_{k}}{(\mathbf{B}\mathbf{x})_{k}}\right) \end{aligned}$$

• $\mathbf{x} > 0$ is unique up to positive multiples,

•
$$\mathbf{w} = \mathbf{y} \circ \mathbf{x}$$
 is a unique vector in $\Pi_K^+ = {\mathbf{x} > 0, \sum_k x_k = 1}.$

Let $\bar{\mathbf{p}}$ and $\bar{\mathbf{q}}$ are principal right and left eigenvectors of $\mathbf{B}^{(k_0)}$. Let

- $\mathbf{w}^* = \bar{\mathbf{q}} \circ \bar{\mathbf{p}} > 0$ and
- $\theta(e^x)$ be convex in $x \in \mathbb{R}$.

Then $\mathbf{p}^* = \bar{\mathbf{p}}$ (max-min fair power control).

- The approach may not be meaningful for an algorithmic solution.
- Compute **w**^{*} iteratively in parallel to the power iteration.

Saddle-point algorithm

- Design a saddle-point power control algorithm that converges to $(\mathbf{w}^*, \bar{\mathbf{p}})$.
 - $\bullet~\mathbf{p},\mathbf{w}$ and the dual variables are iterated simultaneously.

$$\begin{split} & \underset{\mathbf{s}}{\min \max} \sum_{\mathbf{w}} \sum_{k} w_{k} \theta \Big(\frac{e^{s_{k}}}{I_{k}(e^{\mathbf{s}})} \Big) \quad \text{subject to} \begin{cases} e^{\mathbf{s}} - \hat{\mathbf{p}} \leq 0 \\ \|\mathbf{w}\|_{1} - 1 = 0, \mathbf{w} \geq 0 \,. \end{split}$$

Theorem

A saddle-point algorithm operating on a classical linear constrained Lagrangian converges to a global optimum that is a saddle point given by

$$\max_{\mathbf{u}\in\Pi_{K}}\min_{\mathbf{s}\in\mathcal{S}}\sum_{k\in\mathcal{K}}w_{k}\theta\Big(\frac{e^{s_{k}}}{I_{k}(e^{\mathbf{s}})}\Big)=\min_{\mathbf{s}\in\mathcal{S}}\max_{\mathbf{u}\in\Pi_{K}}\sum_{k\in\mathcal{K}}w_{k}\theta\Big(\frac{e^{s_{k}}}{I_{k}(e^{\mathbf{s}})}\Big)$$

Outline

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control
- Other Applications of Interference Functions
- A Useful Sufficient Condition

3 Affine Interference Functions

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights

Joint power control and receive beamforming

- Joint power control and transceiver optimization
- Simulations

 \bullet Optimize RX beamformers alternately with (\mathbf{w},\mathbf{p})

Alternating optimization

Require:
$$n = 0, \mathbf{r}_k(0) \in \mathbf{U}_k, k \in \mathcal{K}, \mathbf{p}(0) \in \mathbf{P}, \mathbf{u}(0) \in \Pi_K^+$$

1: repeat

2:
$$n = n + 1$$

3:
$$\mathbf{p}(n) = \arg\min_{\mathbf{p}\in\mathbf{P}} \max_{\mathbf{u}\in\Pi_{K}^{+}} G(\mathbf{u},\mathbf{p},\mathbf{R}(n-1))$$

4:
$$\mathbf{r}_k(n) = \arg \max_{\mathbf{r} \in \mathbf{U}_k} \operatorname{SIR}_k(\mathbf{p}(n), \mathbf{r}) \quad \forall_k$$

5: until termination condition is satisfied

The proposed algorithm converges to a global optimum of the max-min SIR balancing problem over the joint space of transmit powers and receive beamformers.

- What about transmit beamforming?
 - A big challenge mainly due to the lack of the uplink-downlink duality

Outline

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control
- Other Applications of Interference Functions
- A Useful Sufficient Condition

3 Affine Interference Functions

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights
- Joint power control and receive beamforming
- Joint power control and transceiver optimization
- Simulations

Swapping roles

- (i) Given TX beamformers, perform joint power control and RX beamforming
- (ii) Swap the roles of transmitters and receivers, and go to (i)
 - If QoS power control is applied $p_k(n+1) = I_k(\mathbf{p}(n))$, then
 - the scheme amenable to distributed implementation
 - each SIR increases monotonically
 - provides interference alignment for SNR $\rightarrow \infty$.

Outline

Some Definitions

2 Applications of Standard Interference Functions

- Fixed-Point Power Control Algorithm
- Admission Control
- Other Applications of Interference Functions
- A Useful Sufficient Condition

3 Affine Interference Functions

- Power control with fixed beamformers
 - Fixed weights
 - Improving Convergence Rate
 - Utility-based optimization with QoS support
 - Max-min fair weights
- Joint power control and receive beamforming
- Joint power control and transceiver optimization

Simulations

The Worst-Case Performance

- 4 RX and TX antennas,
- SNR=30 dB,
- relatively strong interference
- 4 iterations on average

Part II

Time-Varying Channels

Introduction

- 5 Projection onto closed convex sets
- 6 Adaptive Projected Subgradient Methods

Consensus algorithms

- Analog CoMAC Scheme
- Analog Computability

- Typically, algorithms for distributed optimization assume that the cost-function is fixed (i.e., it does not change during the iterations of the algorithm).
- However, in large-scale networks it may be unrealistic to solve (approximately) each instance of the optimization problem whenever the cost function changes.
 - Too much energy may be spent in coordination.
 - By the time one instance of the optimization problem is solved, the optimization problem may have changed substantially.
- Changing the cost function at each iteration in an ad-hoc fashion may lead to unexpected results (even if there is a time-invariant solution).

Two-step Algorithmic Solution

- 1) Local optimization step: All nodes estimates the (same) parameter of interest by optimizing their local functions
- 2) Consensus step: Nodes exchange and fuse some information to improve their estimates. In each node the estimate resulting from cooperation should be better than that obtained with the node working alone.
 - The information exchange is limited by the network topology.

Diffusion Networks

• The diffusion mode of cooperation

- The nodes exchange information with their neighbors
- No node has access to all information available to the network
- Links are possibly unreliable

Distributed Set-Theoretic Approaches

- Each node constructs/updates one or multiple sets in online fashion from measurements and information received from other nodes.
- Additional sets are constructed from a-priori knowledge.
- The sets are constructed so that their intersection contains an optimal estimate.
- Each node projects its estimate on its local sets.
- Information is exchanged for the process to converge to or track a common value in the intersection.

Introduction

5 Projection onto closed convex sets

6 Adaptive Projected Subgradient Methods

Consensus algorithms

- Analog CoMAC Scheme
- Analog Computability

Projection onto closed convex sets (POCS)

Fundamental theorem of POCS (Gubin et al. '67)

Let C_i (i = 1, ..., M) denote $M < \infty$ closed convex sets in a Hilbert space. Assume that

$$C_0 := \bigcap_{i=1}^M C_i \neq \emptyset.$$

Then for every $x \in \mathcal{H}$, the sequence

$$\{\boldsymbol{x}_n := T^n(\boldsymbol{x})\},\$$

where $T := T_{C_1} T_{C_2} \cdots T_{C_M}$, converges weakly to a point p of C_0 .

$$\lim_{n o \infty} < oldsymbol{x}_n, oldsymbol{z} > = < oldsymbol{p}, oldsymbol{z} >, \quad orall oldsymbol{z} \in \mathcal{H}$$

Projection onto closed convex sets (POCS)

Projections vs relaxed projections

- The POCS theory assumes a finite number of closed convex sets.
- The fundamental theorem of POCS cannot be applied to cases with time-varying closed convex sets.
 - Time-varying sets are used to capture scenarios with time-varying channels.
- In such cases we can use the adaptive projected subgradient method.

Yamada '03,

Yamada and Ogura '04

Slavakis, Yamada, and Ogura '06

Introduction

Projection onto closed convex sets

6 Adaptive Projected Subgradient Methods

Consensus algorithms

- Analog CoMAC Scheme
- Analog Computability

Problem Statement

• N agents generate a sequence of optimization problems indexed by i.

$$\begin{split} \min \Theta[i](\boldsymbol{h}) & \bigoplus_{2[i]} \\ \text{where} & \Theta[i](\boldsymbol{h}) = \sum_{k=1}^{N} \Theta_{k}[i](\boldsymbol{h}) & \bigoplus_{k=1}^{M} \Theta_{k}[i]$$

Assumptions (1)

• Each agent has its own estimate $h_k[i]$ of a minimizer of the global function: N

$$\Theta[i](oldsymbol{h}) = \sum_{k=1} \Theta_k[i](oldsymbol{h})$$

• At each time i, the local functions have a common (nonempty) set of minimizers

Assumptions (2)

As a result, there exists $h \in \mathbb{R}^M$ that is a minimizer of every local function and every global function $\Theta[i]$ at any time instant i... ===> We should find, at every node, a point that minimizes infinitely many global functions

Adaptive Projected Subgradient Method (1)

Step 1) Apply a particular version of the adaptive projected subgradient method in each node [Yamada and Ogura' 04] $(k = 1, ..., N) \qquad \inf_{\mathbf{h}} \Theta_k[i](\mathbf{h}) \underbrace{(I \text{ assume to be 0 in the following})}_{\mathbf{h}}$ $\boldsymbol{h}_{k}^{\prime}[i+1] = \boldsymbol{h}_{k}[i] - \mu_{k}[i] \frac{(\Theta_{k}[i](\boldsymbol{h}_{k}[i]) - \Theta_{k}^{\star}[i])}{(\|\Theta_{k}^{\prime}[i](\boldsymbol{h}_{k}[i])\|^{2} + \delta_{k}[i])} \Theta_{k}^{\prime}[i](\boldsymbol{h}_{k}[i]),$ Small constant Step size $\mu_k[i] \in (0,2)$ $1 \rightarrow 2 \rightarrow 3$ • Step 2) Information exchange $\boldsymbol{h}_{k}[i+1] = \sum_{j \in \mathcal{N}_{k}[i]} \boldsymbol{W}_{kj}[i]\boldsymbol{h}_{j}'[i+1], \quad k = 1, \dots, N,$ **Random matrices** satisfying properties Neighbors of agent k of consensus matrices (very easy to construct!)

Adaptive Projected Subgradient Method (2)

Theorem (Cavalcante et al. 2009, Cavalcante et al. 2011) If $\mu_k[i] \in (0, 2), \ (k \in \mathcal{N}),$ then $E[\|\psi[i+1] - \psi^{\star}\|^2] < E[\|\psi[i] - \psi^{\star}\|^2]$ for every $\boldsymbol{\psi}^{\star} \in C^{\star} := \{ \boldsymbol{\psi} = [\boldsymbol{h}^T \ \boldsymbol{h}^T \ \dots \boldsymbol{h}^T]^T \in \mathbb{R}^{MN} \mid \boldsymbol{h} \in \Upsilon^{\star} \}$ $\Upsilon^{\star} := \bigcap_{i \geq 0} \bigcap_{k=1}^{N} \Upsilon_{k}[i] \neq \emptyset$ (set of time-invariant solutions)

- So far we have assumed noiseless information exchange.
 - This ignores the presence of noise in the case of analog computation schemes.
- Recently we have extended the APSM to cope with noisy communication in the consensus step (corrupted by additive noise).
 - The framework of stochastic approximation was used to dampen the effects of noise (by a sequence of decreasing step sizes).
- Under some mild conditions, the algorithm was shown to converge almost surely.

Cavalcane and Stanczak '13

Empirical Evaluation (Signal Detection)

- 20 nodes distributed uniformly at random in a unit grid
- \bullet Nodes are neighbors if their Euclidean distance is less or equal than $\sqrt{\log(N)/N}$
- Noise i.i.d with pdf $f = (1 \beta)\mathcal{N}(0, \nu^2) + \beta\mathcal{N}(0, \kappa\nu^2)$

Introduction

- 5 Projection onto closed convex sets
- 6 Adaptive Projected Subgradient Methods

Consensus algorithms

- Analog CoMAC Scheme
- Analog Computability

- Distributed signal detection methods use consensus algorithms as a building block.
- Traditional consensus algorithms (gossip algorithms) can be too slow in practice.
 - Existing acceleration techniques are often insufficient.
 - Most algorithms deal with the average consensus problem.
- Other non-linear functions are of interest (e.g. maximum, geometric mean).
- Approach
 - harness interference for computations.
 - Find appropriate function representations.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

Randomized Gossiping

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

Randomized Gossiping

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

Randomized Gossiping

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

Randomized Gossiping

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

Randomized Gossiping

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

Randomized Gossiping

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

Randomized Gossiping

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

Randomized Gossiping

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

Randomized Gossiping

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

f-Consensus Problem

Each sensor node attempts to compute $f(x_1, \ldots, x_n)$ as fast as possible.

Cluster-Based Consensus (1 Cluster)

Figure: 3 Clusters, 16 nodes, "Arithmetic Mean"

M. Zheng and M. Goldenbaum and S. Stanczak and H. Yu, "Fast Average Consensus in Clustered Wireless Sensor Networks by Superposition Gossiping", IEEE WCNC, 2012.

• **Problem:** Compute a function *f*

- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - . Too much information sentle
- Separating communication and computation can be highly inefficient. [Nazer,Gastpar '07]
 - Gan we merge data transmission and function gamputation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - Too much information sent!
- Separating communication and computation can be highly inefficient. [Nazer,Gastpar '07]
 - Can we merge data transmission and function gomptation into one stell?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating **communication** and **computation** can be highly inefficient. [Nazer,Gastpar '07]
 - Can we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating communication and computation can be highly inefficient. [Nazer,Gastpar '07]
 - Gan we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating communication and computation can be highly inefficient. [Nazer,Gastpar '07]
 - Can we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating communication and computation can be highly inefficient. [Nazer,Gastpar '07]
 - Gan we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating communication and computation can be highly inefficient. [Nazer,Gastpar '07]
 - Can we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating communication and computation can be highly inefficient. [Nazer,Gastpar '07]
 - Can we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating **communication** and **computation** can be highly inefficient. [Nazer,Gastpar '07]
 - Can we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating **communication** and **computation** can be highly inefficient. [Nazer,Gastpar '07]
 - Can we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating communication and computation can be highly inefficient. [Nazer,Gastpar '07]
 - Can we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating communication and computation can be highly inefficient. [Nazer,Gastpar '07]
 - Can we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]

- **Problem:** Compute a function *f*
- Typically transmissions are orthogonalized to combat interference
- Cluster head reconstructs each sensor signal **separately** and **subsequently** computes *f*
 - but it also destroys information!
 - Too much information sent!
- Separating communication and computation can be highly inefficient. [Nazer,Gastpar '07]
 - Can we merge data transmission and function computation into one step?
- Yes, as the broadcast property can be exploited to merge the processes of computation and communication. [Stanczak et al. '06]
- How to compute nonlinear functions?
- How to cope with practical impairments (asynchronism, fading)?

Introduction

- 5 Projection onto closed convex sets
- 6 Adaptive Projected Subgradient Methods
- Consensus algorithms
 Analog CoMAC Scheme
 Analog Computability

- We developed a coding scheme to efficiently compute some functions. It
 - requires only coarse synchronization and channel magnitudes at the transmitters
 - calls for little CSI if multiple antenna elements are used at the sink.

M. Goldenbaum, S. Stanczak, "Robust Analog Function Computation via Wireless Multiple-Access Channels", submitted journal version, 2012 (available at arXiv).

Sławomir Stańczak ()

- We developed a coding scheme to efficiently compute some functions. It
 - requires only coarse synchronization and channel magnitudes at the transmitters
 - calls for little CSI if multiple antenna elements are used at the sink.
- Each sensor node transmits concurrently a sequence of independent random symbols
 - transmit power is controlled by sensor reading
 - fading effects are corrected through channel inversion, scaling and multiple antenna techniques at the sink.
- Sink estimates the function value from the received energy.
- The scheme can be used in connection with any cluster-based consensus algorithm to reach average consensus. (no proof of convergence)
- If average consensus can be reached, then it is possible to attain consensus on any function, provided that
 - the sensor reading are suitably pre-processed and
 - Isome post-processing is applied to the average consensus.

M. Goldenbaum, S. Stanczak, "Robust Analog Function Computation via Wireless Multiple-Access Channels", submitted journal version, 2012 (available at arXiv).

Sławomir Stańczak ()

- We developed a coding scheme to efficiently compute some functions. It
 - requires only coarse synchronization and channel magnitudes at the transmitters
 - calls for little CSI if multiple antenna elements are used at the sink.
- Each sensor node transmits concurrently a sequence of independent random symbols
 - transmit power is controlled by sensor reading
 - fading effects are corrected through channel inversion, scaling and multiple antenna techniques at the sink.
- Sink estimates the function value from the received energy.
- The scheme can be used in connection with any cluster-based consensus algorithm to reach average consensus. (no proof of convergence)
- If average consensus can be reached, then it is possible to attain consensus on any function, provided that
 - the sensor reading are suitably pre-processed and
 - Isome post-processing is applied to the average consensus.

M. Goldenbaum, S. Stanczak, "Robust Analog Function Computation via Wireless Multiple-Access Channels", submitted journal version, 2012 (available at arXiv).

Sławomir Stańczak ()

- We developed a coding scheme to efficiently compute some functions. It
 - requires only coarse synchronization and channel magnitudes at the transmitters
 - calls for little CSI if multiple antenna elements are used at the sink.
- Each sensor node transmits concurrently a sequence of independent random symbols
 - transmit power is controlled by sensor reading
 - fading effects are corrected through channel inversion, scaling and multiple antenna techniques at the sink.
- Sink estimates the function value from the received energy.
- The scheme can be used in connection with any cluster-based consensus algorithm to reach average consensus. (no proof of convergence)
- If average consensus can be reached, then it is possible to attain consensus on any function, provided that
 - the sensor reading are suitably pre-processed and
 - Some post-processing is applied to the average consensus.

M. Goldenbaum, S. Stanczak, "Robust Analog Function Computation via Wireless Multiple-Access Channels", submitted journal version, 2012 (available at arXiv).

Introduction

- 5 Projection onto closed convex sets
- 6 Adaptive Projected Subgradient Methods
- Consensus algorithms
 Analog CoMAC Scheme
 - Analog Computability

Analog Computability

Wireless MAC

$$y = \sum_{i=1}^{N} h_i x_i + v$$

- \Rightarrow We can estimate any function having a representation (*).
- Examples:
 - Arithmetic Mean: $f(x_1,\ldots,x_N)=rac{1}{N}\sum_i x_i, \ \varphi_i(x)=x, \ \psi(y)=rac{1}{N}y$
 - Geometric Mean: $f(x_1, \ldots, x_N) = (\prod_i x_i)^{1/N}$, $\varphi_i(x) = \log(x)$, $\psi(y) = \exp(y/N)$
 - Euclidean Norm: $f(x_1, \ldots, x_N) = \sqrt{x_1^2 + \cdots + x_N^2}$, $\varphi_i(x) = x^2$, $\psi(y) = \sqrt{y}$
- Every function is universally computable via an ideal MAC, since every $f:[0,1]^N \to \mathbb{R}$ has a representation (*).

(*)

Analog Computability

Ideal Wireless MAC

- ullet \Rightarrow We can estimate any function having a representation (*).
- Examples:
 - Arithmetic Mean: $f(x_1,\ldots,x_N)=rac{1}{N}\sum_i x_i, \ \varphi_i(x)=x, \ \psi(y)=rac{1}{N}y$
 - Geometric Mean: $f(x_1, \ldots, x_N) = (\prod_i x_i)^{1/N}$, $\varphi_i(x) = \log(x)$, $\psi(y) = \exp(y/N)$
 - Euclidean Norm: $f(x_1, \ldots, x_N) = \sqrt{x_1^2 + \cdots + x_N^2}$, $\varphi_i(x) = x^2$, $\psi(y) = \sqrt{y}$
- Every function is universally computable via an ideal MAC, since every $f:[0,1]^N \to \mathbb{R}$ has a representation (*).

(*)
Ideal Wireless MAC

$$y = \sum_{i=1}^{N} \varphi_i(x_i)$$

• \Rightarrow We can estimate any function having a representation (*).

- Examples:
 - Arithmetic Mean: $f(x_1,\ldots,x_N)=rac{1}{N}\sum_i x_i, \ \varphi_i(x)=x, \ \psi(y)=rac{1}{N}y$
 - Geometric Mean: $f(x_1, \ldots, x_N) = (\prod_i x_i)^{1/N}$, $\varphi_i(x) = \log(x)$, $\psi(y) = \exp(y/N)$
 - Euclidean Norm: $f(x_1, \ldots, x_N) = \sqrt{x_1^2 + \cdots + x_N^2}$, $\varphi_i(x) = x^2$, $\psi(y) = \sqrt{y}$
- Every function is universally computable via an ideal MAC, since every $f:[0,1]^N \to \mathbb{R}$ has a representation (*).

(*)

Ideal Wireless MAC

$$\psi(y) = \psiigg(\sum_{i=1}^N arphi_i(x_i)igg)$$

ullet \Rightarrow We can estimate any function having a representation (*).

- Examples:
 - Arithmetic Mean: $f(x_1, \ldots, x_N) = \frac{1}{N} \sum_i x_i$, $\varphi_i(x) = x$, $\psi(y) = \frac{1}{N} y$
 - Geometric Mean: $f(x_1, \ldots, x_N) = (\prod_i x_i)^{1/N}$, $\varphi_i(x) = \log(x)$, $\psi(y) = \exp(y/N)$

• Euclidean Norm: $f(x_1,\ldots,x_N) = \sqrt{x_1^2 + \cdots + x_N^2}$, $\varphi_i(x) = x^2$, $\psi(y) = \sqrt{y}$

• Every function is universally computable via an ideal MAC, since every $f:[0,1]^N \to \mathbb{R}$ has a representation (*).

(*)

Ideal Wireless MAC

$$\psi(y) = \psi\left(\sum_{i=1}^{N} \varphi_i(x_i)\right) \tag{(*)}$$

• \Rightarrow We can estimate any function having a representation (*).

- Examples:
 - Arithmetic Mean: $f(x_1,\ldots,x_N) = rac{1}{N}\sum_i x_i, \ arphi_i(x) = x, \ \psi(y) = rac{1}{N}y$
 - Geometric Mean: $f(x_1, \ldots, x_N) = (\prod_i x_i)^{1/N}$, $\varphi_i(x) = \log(x)$, $\psi(y) = \exp(y/N)$
 - Euclidean Norm: $f(x_1, \ldots, x_N) = \sqrt{x_1^2 + \cdots + x_N^2}$, $\varphi_i(x) = x^2$, $\psi(y) = \sqrt{y}$
- Every function is universally computable via an ideal MAC, since every $f:[0,1]^N \to \mathbb{R}$ has a representation (*).

Ideal Wireless MAC

$$\psi(y) = \psi\left(\sum_{i=1}^{N} \varphi_i(x_i)\right) \tag{(*)}$$

- \Rightarrow We can estimate any function having a representation (*).
- Examples:
 - Arithmetic Mean: $f(x_1, \ldots, x_N) = \frac{1}{N} \sum_i x_i, \varphi_i(x) = x, \ \psi(y) = \frac{1}{N} y$
 - Geometric Mean: $f(x_1, \ldots, x_N) = (\prod_i x_i)^{1/N}$, $\varphi_i(x) = \log(x)$, $\psi(y) = \exp(y/N)$
 - Euclidean Norm: $f(x_1, \ldots, x_N) = \sqrt{x_1^2 + \cdots + x_N^2}, \ \varphi_i(x) = x^2, \ \psi(y) = \sqrt{y}$
- Every function is universally computable via an ideal MAC, since every $f: [0,1]^N \to \mathbb{R}$ has a representation (*).

Ideal Wireless MAC

$$\psi(y) = \psi\left(\sum_{i=1}^{N} \varphi_i(x_i)\right) \tag{(*)}$$

- \Rightarrow We can estimate any function having a representation (*).
- Examples:
 - Arithmetic Mean: $f(x_1, \ldots, x_N) = \frac{1}{N} \sum_i x_i, \varphi_i(x) = x, \ \psi(y) = \frac{1}{N} y$
 - Geometric Mean: $f(x_1, \ldots, x_N) = (\prod_i x_i)^{1/N}$, $\varphi_i(x) = \log(x)$, $\psi(y) = \exp(y/N)$
 - Euclidean Norm: $f(x_1, \ldots, x_N) = \sqrt{x_1^2 + \cdots + x_N^2}, \ \varphi_i(x) = x^2, \ \psi(y) = \sqrt{y}$
- Every function is universally computable via an ideal MAC, since every $f: [0,1]^N \to \mathbb{R}$ has a representation (*).

M. Goldenbaum, H. Boche, S. Stanczak, "Harnessing Interference for Analog Function Computation in Wireless Sensor Networks", submitted, 2012.

Analog Computation via Signal Powers (Numerical Examples)

Performance Measure:

$$|E| = \left| \frac{\hat{f} - f}{f_{\max} - f_{\min}} \right|$$

• Estimation/Computation of non-linear functions by transmission-side data pre-processing and receiver-side signal post-processing.

- SIMO: A correction of fading effects at the sink is possible.
- Simulation: K = 25, uncorrelated Rician fading: $H_{nk}^{(m)} \sim \mathcal{N}_{\mathbb{C}}(0.5, 0.75)$

- SIMO: A correction of fading effects at the sink is possible.
- Simulation: K = 25, uncorrelated Rician fading: $H_{nk}^{(m)} \sim \mathcal{N}_{\mathbb{C}}(0.5, 0.75)$

- SIMO: A correction of fading effects at the sink is possible.
- Simulation: K = 25, uncorrelated Rician fading: $H_{nk}^{(m)} \sim \mathcal{N}_{\mathbb{C}}(0.5, 0.75)$

- SIMO: A correction of fading effects at the sink is possible.
- Simulation: K = 25, uncorrelated Rician fading: $H_{nk}^{(m)} \sim \mathcal{N}_{\mathbb{C}}(0.5, 0.75)$

Ongoing work/Open problems

- Construction/offline computation of pre- and post-processing functions.
- Robustness against practical impairments like fading and noise (in networks)

Thank you!

D.P. Bertsekas.

Nonlinear Programming. Athena Scientific, Belmont, Massachusetts, 1995.

H. Boche and S. Stanczak.

Convexity of some feasible QoS regions and asymptotic behavior of the minimum total power in CDMA systems.

IEEE Trans. on Comm., 52(12):2190 - 2197, December 2004.

H. Boche and S. Stanczak.

Log-convexity of the minimum total power in CDMA systems with certain quality-of-service guaranteed. *IEEE Trans. on Inform. Theory*, 51(1):374–381, January 2005.

M. Chiang.

Balancing transport and physical layers in wireless multihop networks: Jointly optimal congestion control and power control.

IEEE Journal on Selected Areas in Communications, 23(1):104–116, Jan. 2005.

Stanczak S, Wiczanowski M, Boche H.

Distributed Utility-Based Power Control: Objectives and Algorithms. IEEE Trans Signal Processing. 2007 Oct;55(10):5058–5068.

F.P. Kelly, A.K. Maulloo, and D.K.H. Tan.

Rate control for communication networks: Shadow prices, proportional fairness and stability. *Journal of Operations Research Society*, 49(3):237–252, March 1998.

H.J. Kushner.

Stochastic Approximation and Recursive Algorithms and Applications. Springer, 2003.

Seneta E.

Non-Negative Matrices and Markov Chains. Springer, Berlin; 1981.

Arnold L, Gundlach V, Demetrius L.

Evolutionary Formalism for Products of positive Random Matrices. Ann Appl Probab. 1994;4(3):859–901.

Friedland S, Karlin S.

Some Inequalities for the Spectral Radius of Non-Negative Matrices and Applications. Duke Math J. 1975;42(3):459–490.

Kingman JFC.

A Convexity Property of Positive Matrices. Quart, J Math Oxford Ser. 1961;12(2):283–284.

Wiczanowski M, Stanczak S, Boche H.

Providing quadratic convergence of decentralized power control in wireless networks- The method of min-max functions.

IEEE Trans Signal Processing. 2008 Aug;56(8):4053-4068.

J. Mo and J. Walrand.

Fair end-to-end window-based congestion control. IEEE/ACM Trans. on Networking, 8(5), October 2000.

M. Xiao, N.B. Schroff, and E.K.P. Chong.

A utility-based power control scheme in wireless cellular systems. *IEEE/ACM Trans. Networking*, 11(2):210–221, April 2003.

R.D. Yates.

A framework for uplink power control in cellular radio systems. IEEE J. Select. Areas Commun., 13(7):1341–1347, September 1995.

Stanczak S, Kaliszan M, Bambos N, Wiczanowski M.

A Characterization of Max-Min SIR-Balanced Power Allocation with Applications. In: Proc. IEEE International Symposium on Information Theory (ISIT). Seoul, Korea; 2009.

A Distributed Subgradient Method for Dynamic Convex Optimization Problems under Noisy Information Exchange

IEEE Journal of Selected Topics in Signal Processing, 7(2): 243-256, April 2013

- T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, "Broadcast gossip algorithms for consensus," IEEE Trans. Signal Processing, vol. 57, no. 7, pp. 2748–2761, July 2009.
- D. Blatt and A. O. Hero III, "Energy-based sensor network source localization via projection onto convex sets," IEEE Trans. Signal Processing, vol. 54, no. 9, pp. 3614–3619, Sept. 2006.
- S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, "Randomized gossip algorithms," IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2508–2530, June 2006
- R. L. G. Cavalcante and S. Stanczak, "Robust Set-Theoretic Distributed Detection in Diffusion Networks," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2012
- R.L.G. Cavalcante, A. Rogers, and N. R. Jennings, "Consensus acceleration in multi-agent systems with the Chebyshev semi-iterative method," in Proc. 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 165-172, May 2011.
- R. L. G. Cavalcante, A. Rogers, N. R. Jennings, and I. Yamada, "Distributed Asymptotic Minimization of Sequences of Convex Functions by a Broadcast Adaptive Subgradient Method," IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 4, pp. 739-753, Aug. 2011
- R.L.G.Cavalcante and B. Mulgrew, "Adaptive filter algorithms for accelerated discrete-time consensus," IEEE Trans. Signal Processing, vol. 58, no. 3, pp. 1049-1058, March 2010.
- R.L.G.Cavalcante, I. Yamada, and B. Mulgrew, "An Adaptive Projected Subgradient Approach to Learning in Diffusion Networks," IEEE Trans. Signal Processing, vol. 57, no. 7, pp. 2762-2774, July 2009.

- H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2011.
- R. Olfati-Saber, J. A. Fax, and R. M. Murray, "Consensus and cooperation in networked multi-agent systems," Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007
- B. T. Polyak, "Minimization of unsmooth functionals," USSR Comput. Math. Phys., vol. 9, pp. 14–29, 1969.
- A. H. Sayed and C. G. Lopes, "Adaptive processing over distributed networks," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E90-A, no. 8, pp. 1504– 1510, 2007
- K. Slavakis, I. Yamada, and N. Ogura, "The adaptive projected subgradient method over the fixed point set of strongly attracting nonexpansive mappings," Numerical Functional Analysis and Optimization, vol. 27, no. 7-8, pp. 905–930, Dec. 2006.
- H. Stark and Y. Yang, Vector Space Projections A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics. New York: Wiley, 1998
- I. Yamada, "Adaptive projected subgradient method: A unified view for projection based adaptive algorithms," J. IEICE, vol. 86, no. 8, pp. 654–658, Aug. 2003, in Japanese.
- I. Yamada and N. Ogura, "Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions," Numerical Functional Analysis and Optimization, vol. 25, no. 7/8, pp. 593–617, 2004
- M. Zheng, M. Goldenbaum, S. Stanczak, and H. Yu, "Fast Average Consensus in Clustered Wireless Sensor Networks by Superposition Gossiping," Proc. IEEE Wireless Communications and Networking Conference (WCNC '12)