
Interference Management:

The Compute-and-Forward Perspective

Michael Gastpar, EPFL and UC Berkeley

Acknowledgement: Bobak Nazer

NEWCOM School on Interference Management, EURECOM
May 30, 2013

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Outline

I. Interference

II. Compute-and-Forward

III. Interference: The Compute-and-Forward Perspective

IV. Single-Hop Networks

V. Multi-hop Networks

Interference

w1 E1
x1

w2 E2
x2

pY |X1X2

y
D ŵ1

ŵ2

Interference

w1 E1
x1

w2 E2
x2

z

y
D

ŵ1

ŵ2

Interference

w1 E1
x1

w2 E2
x2

pY1|X1X2

y1 R3
ŵ1

ŵ2

pY2|X1X2

y2 D1
ŵ1

ŵ2

Interference

w1 E1
x1

w2 E2
x2

pY4|X1X2

y4 R4 x4

pY3|X1X2

y3 R3 x3

pY5|X3X4

y5 D5
ŵ1

ŵ2

Interference

What should an intermediate node do with interfering signals?

• It could decode all of the transmitted signals.

• It could compress its observation and forward this description.

• ...

To discuss these questions, we need a more formal framework, which
we will introduce next.

Point-to-Point Channels

w E
x pY |X

y
D ŵ

The Usual Suspects:

• Message w ∈ {0, 1}k
• Encoder E : {0, 1}k → X n

• Input x ∈ X n

• Estimate ŵ ∈ {0, 1}k
• Decoder D : Yn → {0, 1}k
• Output y ∈ Yn

• Memoryless Channel p(y|x) =
n
∏

i=1

p(yi|xi)

• Rate R =
k

n
.

• (Average) Probability of Error: P{ŵ 6= w} → 0 as n→∞. Assume
w is uniform over {0, 1}k .

i.i.d. Random Codes

• Generate 2nR codewords
x = [X1 X2 · · · Xn] independently
and elementwise i.i.d. according to
some distribution pX

p(x) =

n
∏

i=1

pX(xi)

• Bound the average error probability
for a random codebook.

• If the average performance over
codebooks is good, there must exist
at least one good fixed codebook.

0 1 2 3 4 · · · q − 1

0

1

2

3

4

...

q − 1

(Weak) Joint Typicality

• Two sequences x and y are (weakly) jointly typical if

∣

∣

∣

∣

− 1

n
log p(x)−H(X)

∣

∣

∣

∣

<ǫ

∣

∣

∣

∣

− 1

n
log p(y)−H(Y)

∣

∣

∣

∣

<ǫ

∣

∣

∣

∣

− 1

n
log p(x,y) −H(X,Y)

∣

∣

∣

∣

<ǫ

• For our considerations, weak typicality is convenient as it can also be
stated in terms of differential entropies.

• If x and y are i.i.d. sequences, the probability that they are jointly
typical goes to 1 as n goes to infinity.

Joint Typicality Decoding

Decoder looks for a codeword that is jointly typical with the received
sequence y

Error Events

1. Transmitted codeword x is not jointly typical
with y.
=⇒ Low probability by the

Weak Law of Large Numbers.

2. Another codeword x̃ is jointly typical with y.

Cuckoo’s Egg Lemma

Let x̃ be an i.i.d. sequence that is independent from the received
sequence y.

P

{

(x̃,y) is jointly typical
}

≤ 2−n(I(X;Y)−3ǫ)

See Cover and Thomas.

Point-to-Point Capacity

• We can upper bound the probability of error via the union bound:

P{ŵ 6= w} ≤
∑

w̃ 6=w

P

{

(x(w̃),y) is jointly typical.
}

≤ 2−n(I(X;Y)−R−3ǫ) ← Cuckoo’s Egg Lemma

• If R < I(X;Y), then the probability of error can be driven to zero
as the blocklength increases.

Theorem (Shannon ’48)

The capacity of a point-to-point channel is C = max
pX

I(X;Y).

Multiple-Access Channels

w1 E1
x1

w2 E2
x2

pY |X1X2

y
D ŵ1

ŵ2

• Rate Region: Set of rates (R1, R2) such that the encoders can
send w1 and w2 to the decoder with vanishing probability of error

P{(ŵ1, ŵ2) 6= (w1,w2)} → 0 as m→∞

Multiple-Access Channels

Rate Region (Ahlswede, Liao)

Convex closure of all (R1, R2) satisfying

R1 < I(X1;Y |X2)

R2 < I(X2;Y |X1)

R1 +R2 < I(X1,X2;Y)

for some p(x1)p(x2).

Outline

I. Interference

II. Compute-and-Forward

(a) Basic Ideas
(b) AWGN Case: Introduction to Lattice Codes
(c) AWGN Case: Lattice Codes for Compute-and-Forward
(d) Beyond the AWGN Case: A few thoughts

III. Interference: The Compute-and-Forward Perspective

IV. Single-Hop Networks

V. Multi-hop Networks

Point-to-Point Channels

w E
x pY |X

y
D ŵ

The Usual Suspects:

• Message w ∈ {0, 1}k
• Encoder E : {0, 1}k → X n

• Input x ∈ X n

• Estimate ŵ ∈ {0, 1}k
• Decoder D : Yn → {0, 1}k
• Output y ∈ Yn

• Memoryless Channel p(y|x) =
n
∏

i=1

p(yi|xi)

• Rate R =
k

n
.

• (Average) Probability of Error: P{ŵ 6= w} → 0 as n→∞. Assume
w is uniform over {0, 1}k .

Linear Codes

• Linear Codebook: A linear map between messages and codewords
(instead of a lookup table).

q-ary Linear Codes

• Represent message w as a length-k vector over Fq.

• Codewords x are length-n vectors over Fq.

• Encoding process is just a matrix multiplication, x = Gw.











x1
x2
...
xn











=











g11 g12 · · · g1k
g21 g22 · · · g2k
...

...
. . .

...
gn1 gn2 · · · gnk





















w1

w2
...
wk











• Recall that, for prime q, operations over Fq are just mod q
operations over the reals.

• Rate R =
k

n
log q

Random Linear Codes

• Linear code looks like a regular
subsampling of the elements of Fn

q .

• Random linear code: Generate
each element gij of the generator
matrix G elementwise i.i.d.
according to a uniform distribution
over {0, 1, 2, . . . , q − 1}.

• How are the codewords distributed?
0 1 2 3 4 · · · q − 1

0

1

2

3

4

...

q − 1

Fq

Fq

Codeword Distribution

It is convenient to instead analyze the shifted ensemble x̄ = Gw ⊕ v

where v is an i.i.d. uniform sequence. (See Gallager.)

Shifted Codeword Properties

1. Marginally uniform over Fn
q . For a given message w, the codeword x̄

looks like an i.i.d. uniform sequence.

P{x̄ = x} = 1

qn
for all x ∈ F

n
q

2. Pairwise independent. For w1 6= w2, codewords x̄1, x̄2 are
independent.

P{x̄1 = x1, x̄2 = x2} =
1

q2n
= P{x̄1 = x1}P{x̄2 = x2}

Achievable Rates

• Cuckoo’s Egg Lemma only requires independence between the true
codeword x(w) and the other codeword x(w̃). From the
union bound:

P{ŵ 6= w} ≤
∑

w̃ 6=w

P

{

(x(w̃),y) is jointly typical.
}

≤ 2−n(I(X;Y)−R−3ǫ)

• This is exactly what we get from pairwise independence.

• Thus, there exists a good fixed generator matrix G and shift v for
any rate R < I(X;Y) where X is uniform.

Removing the Shift

w E x̄

z

ȳ
D ŵ

• For a binary symmetric channel (BSC), the output can be written as
the modulo sum of the input plus i.i.d. Bernoulli(p) noise,

ȳ = x̄⊕ z

ȳ = Gw ⊕ v ⊕ z

• Due to this symmetry, the probability of error depends only on the
realization of the noise vector z.
=⇒ For a BSC, x = Gw is a good code as well.

• We can now assume the existence of good generator matrices for
channel coding.

Random I.I.D. vs. Random Linear

• What have we gotten for linearity (so far)?
Simplified encoding. (Decoder is still quite complex.)

• What have we lost?
Can only achieve R = I(X;Y) for uniform X instead of
max
pX

I(X;Y).

• In fact, this is a fundamental limitation of group codes, Ahlswede ’71.

• Workarounds: symbol remapping Gallager ’68, nested linear codes

• Are random linear codes strictly worse than random i.i.d. codes?

Computation over Multiple-Access Channels

w1 E1
x1

w2 E2
x2

pY |X1X2

y
D û

• Rate Region: Set of rates (R1, R2) such that the decoder can
recover f(w1,w2) with vanishing probability of error

P{û 6= f(w1,w2)} → 0 as m→∞

Finite-Field Multiple-Access Channels

w1 E1
x1

w2 E2
x2

z

y
D

ŵ1

ŵ2

R2

R1log q − H(Z)

log q − H(Z)

• Receiver observes noisy modulo sum of
codewords y = x1 ⊕ x2 ⊕ z

Finite Field MAC Rate Region

All rates (R1, R2) satisfying

R1 +R2 ≤ log q −H(Z)

Computation over Finite Field Multiple-Access Channels

• Independent msgs
w1,w2 ∈ F

k
q .

• Want the sum u = w1 ⊕w2

with vanishing prob. of error
P{û 6= u} → 0

w1 E1
x1

w2 E2
x2

z

y
D û

u = w1 ⊕w2

I.I.D. Random Coding

• Generate 2nR1 i.i.d. uniform codewords for user 1.

• Generate 2nR2 i.i.d. uniform codewords for user 2.

• With high probability, (nearly) all sums of codewords are distinct.

• This is ideal for multiple-access but not for computation.

• Need R1 +R2 ≤ log q −H(Z)

Random i.i.d. codes are not good for computation

2nR1 codewords

2nR2 codewords

2n(R1+R2) modulo sums of codewords

x1

x2

z

y

Computation over Finite Field Multiple-Access Channels

Independent msgs w1,w2.

Want the sum u = w1 ⊕w2

with vanishing prob. of error
P{û 6= u} → 0

w1 E1
x1

w2 E2
x2

z

y
D û

u = w1 ⊕w2

Random Linear Coding

• Same linear code at both transmitters x1 = Gw1, x2 = Gw2.

• Sums of codewords are themselves codewords:

y = x1 ⊕ x2 ⊕ z

= Gw1 ⊕Gw2 ⊕ z

= G(w1 ⊕w2)⊕ z

= Gu⊕ z

• Need max(R1, R2) ≤ log q −H(Z)

Random linear codes are good for computation

2nR1 codewords

2nR2 codewords

2nmax(R1,R2) modulo sums of codewords

x1

x2

z

y

Computation over Finite Field Multiple-Access Channels

R2

R1

Linear

I.I.D.

log q −H(Z)

log q −H(Z)

• I.I.D. Random Coding: R1 +R2 ≤ log q −H(Z)

• Random Linear Coding: max (R1, R2) ≤ log q −H(Z)

• Linear codes double the sum rate without any dependency.

• Is this useful for sending messages (no computation)?

Computation over More General MACs

• Consider the following model:

w1 E1
x1

w2 E2
x2

z

w pY |W
y
D û

u = w1 ⊕w2

• Find an achievable computation rate.

Computation over More General MACs

w1 E1
x1

w2 E2
x2

z

w pY |W
y
D û

u = w1 ⊕w2

• One possibly interesting rate is attained by using the same binary
linear code at both transmitters.

• Then, the resulting computation rate is simply R = I(W ;Y), where
W is Bernoulli(1/2).

Gaussian Multiple-Access Channel: Capacity

Rate Region

R1 <
1

2
log

(

1 +
P1

N

)

R2 <
1

2
log

(

1 +
P2

N

)

R1 +R2 <
1

2
log

(

1 +
P1 + P2

N

)

w1 E1
x1

w2 E2
x2

z

y
D

ŵ1

ŵ2

Power constraints P1, P2. Noise variance N .

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

How can we extend this to the Gaussian Multiple-Access Channel?

• Let us assume P = P1 = P2, and introduce, for simplicity,
SNR = P/N.

• Then, consider the following simple approach for the computation
problem:

w1 G
0 → −

√
SNR

1 →
√
SNR

x1

w2 G
0 → −

√
SNR

1 →
√
SNR

x2

z

y
D û

u = w1 ⊕w2

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

Let us use a simple sub-optimal decoding step:

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Decide "1"Decide "0" Decide "0"

• Step 1: for each symbol, decide between −2, 0, 2.
• Step 2: Map: 0 to 1, and both −2 and 2 to 0. Overall, this leads to
a binary asymmetric channel.

• Step 3: ML decoding with respect to the code.

Exercise: Calculate the rate at which we can decode the modulo-2
sum.

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

Exercise: Calculate the rate at which we can decode the modulo-2
sum.

Solution:

• Since both users use the same code, the overall scenario can be
thought of as a point-to-point channel with a binary input.

• 0 is flipped to 1 with probability Q(
√
SNR)−Q(3

√
SNR).

• 1 is flipped to 0 with probability 2Q(
√
SNR).

• On this channel, we are using a uniform input distribution.

• Hence, the rate is equal to the mutual information across this
channel, evaluated for uniform inputs.

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

Two users:

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

Two users, detail:

6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5
0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

Three users:

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Role of Alphabet (“field”) Size

• In binary, the rate can be at most one.

• This may be acceptable in low-SNR.

• In high SNR, it appears inevitable to consider larger alphabets...

Outline

I. Interference

II. Compute-and-Forward

(a) Basic Ideas
(b) AWGN Case: Introduction to Lattice Codes
(c) AWGN Case: Lattice Codes for Compute-and-Forward
(d) Beyond the AWGN Case: A few thoughts

III. Interference: The Compute-and-Forward Perspective

IV. Single-Hop Networks

V. Multi-hop Networks

Lattices

• A lattice Λ is a discrete subgroup of
R
n.

• Can write a lattice as a linear
transformation of the integer
vectors,

Λ = BZ
n ,

for some B ∈ R
n×n.

Lattice Properties

• Closed under addition:
λ1, λ2 ∈ Λ =⇒ λ1 + λ2 ∈ Λ.

• Symmetric: λ ∈ Λ =⇒ −λ ∈ Λ
Z
n is a simple lattice.

Voronoi Regions

• Nearest neighbor quantizer:

QΛ(x) = argmin
λ∈Λ

‖x− λ‖2

• The Voronoi region of a lattice point
is the set of all points that quantize
to that lattice point.

• Fundamental Voronoi region V:
points that quantize to the origin,

V = {x : QΛ(x) = 0}

• Each Voronoi region is just a shift of
the fundamental Voronoi region V

Lattice Tricks

1 Observing the power constraint: Nested Lattices

2 Proving achievable rates:
• Dithering
• “MMSE Scaling”

Nested Lattices

• Two lattices Λ and ΛFINE are nested
if Λ ⊂ ΛFINE

• Nested Lattice Code: All lattice
points from ΛFINE that fall in the
fundamental Voronoi region V of Λ.

• V acts like a power constraint

Rate =
1

n
log

(

Vol(V)
Vol(VFINE)

)

Nested Lattice Codes from q-ary Linear Codes

• Choose an n× k generator
matrix G ∈ F

n×k
q for q-ary code.

• Integers serve as coarse lattice,
Λ = Z

n.

• Map elements {0, 1, 2, . . . , q − 1}
to equally spaced points between
−1/2 and 1/2.

• Place codewords x = Gw into
the fundamental Voronoi region
V = [−1/2, 1/2)n

0 1 2 3 4 · · · q − 1

0

1

2

3

4

...

q − 1

Fq

Fq

(− 1
2
,− 1

2
) (1

2
,− 1

2
)

(− 1
2
, 1
2
) (1

2
, 1
2
)

Modulo Operation

• Modulo operation with respect to
lattice Λ is just the residual
quantization error,

[x] mod Λ = x−QΛ(x) .

• Mimics the role of mod q in q-ary
alphabet.

• Distributive Law:
[

x1 + [x2] mod Λ
]

mod Λ

= [x1 + x2] mod Λ

mod Λ

mod Λ AWGN Channel

w E x

z
y

mod Λ
ỹ D ŵ

• Codebook lives on Voronoi region V of coarse lattice Λ.

• Take mod Λ of received signal prior to decoding.

• What is the capacity of the mod Λ channel?

Using random i.i.d. code drawn over V: C =
1

n
max
p(x)

I(x; ỹ)

mod Λ AWGN Channel Capacity

w E x

z
y

mod Λ
ỹ D ŵ

nC = max
p(x)

I(x; ỹ)

= max
p(x)

(

h(ỹ)− h(ỹ|x)
)

= max
p(x)

(

h(ỹ)− h
(

[z] mod Λ
))

Distributive Law

≥ max
p(x)

(

h(ỹ)− h(z)
)

Point Symmetry of Voronoi Region

= max
p(x)

(

h(ỹ)− n

2
log(2πeN)

)

Entropy of Gaussian Noise

mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ D ŵ

• Channel output entropy is equal to the logarithm of the Voronoi
region volume if it is uniform over V:

h(ỹ) = log(Vol(V)) if ỹ ∼ Unif(V)

• ỹ = [x+ z] mod Λ is uniform over V if x is uniform over V.

• Random i.i.d. coding over the Voronoi region V can achieve:

R =
1

n
log(Vol(V)) − 1

2
log(2πeN)

Power Constraints and Second Moments

w E
x

z
y

mod Λ
ỹ D ŵ

• Must scale lattice Λ so that the uniform distribution over the
Voronoi region V meets the power constraint P .

• Set second moment σ2
Λ =

1

nVol(V)

∫

V
‖x‖2dx equal to P .

Normalized Second Moment: G(Λ) =
σ2
Λ

(Vol(V))2/n

=⇒ 1

n
log(Vol(V)) = 1

2
log

(

σ2
Λ

G(Λ)

)

=
1

2
log

(

P

G(Λ)

)

mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ D ŵ

• Random i.i.d. coding over the Voronoi region V can achieve:

C ≥ 1

n
log(Vol(V))− 1

2
log(2πeN)

=
1

2
log

(

P

G(Λ)

)

− 1

2
log(2πeN)

=
1

2
log

(

P

N

)

− 1

2
log(2πeG(Λ))

What is G(Λ)?

w E
x

z
y

mod Λ
ỹ D ŵ

• The normalized second moment G(Λ) is a dimensionless quantity
that captures the shaping gain.

• Integer lattice is not so bad, G(Zn) = 1/12.

• Capacity under mod Z
n is at least

C ≥ 1

2
log

(

P

N

)

− 1

2
log

(

2πe

12

)

≈ 1

2
log

(

P

N

)

− 0.255

Asymptotically Good G(Λ)

Theorem (Zamir-Feder-Poltyrev ’94)

There exists a sequence of lattices Λ(n) such that lim
n→∞

G(Λ(n)) =
1

2πe
.

n = 1 n = 2

· · ·
n→∞

• Best possible normalized second moment is that of a sphere.

• Using a sequence Λ(n) with an asymptotically good G(Λ(N)) allows
to approach

R =
1

2
log

(

P

N

)

− 1

2
log

(

2πe

2πe

)

=
1

2
log

(

P

N

)

Asymptotically Good G(Λ)

• Can actually get this with a linear code tiled over Zn (see, for
instance, Erez-Litsyn-Zamir ’05.)

• Many works looking at this from different perspectives.

• We will just assume existence.

Properties of Random Linear Codes

Recall the two key properties of random linear codes G from earlier:

Codeword Properties

1. Marginally uniform over Fn
q . For a given message w 6= 0, the

codeword x = Gw looks like an i.i.d. uniform sequence.

P{x = x} = 1

qn
for all x ∈ F

n
q

2. Pairwise independent. For w1,w2 6= 0, w1 6= w2, codewords x1,x2

are independent.

P{x1 = x1,x2 = x2} =
1

q2n
= P{x1 = x1}P{x2 = x2}

Linear Codes for mod Λ Channels

• Instead of an “inner” random
codes, we can use a q-ary linear
code.

• This is exactly a nested lattice.

• Each codeword has a uniform
marginal distribution over the
grid.

• Rate loss due to finite
constellation which goes to 0 as
q →∞.

• Codewords are pairwise
independent so we can apply the
union bound.

0 1 2 3 4 · · · q − 1

0

1

2

3

4

...

q − 1

Fq

Fq

(− 1
2
,− 1

2
) (1

2
,− 1

2
)

(− 1
2
, 1
2
) (1

2
, 1
2
)

x = [γGw] mod Z
n

Linear Codes for mod Λ Channels

• General coarse lattice Λ = BZ
n.

• First, apply generator matrix for
linear code Gw. Then scale
down by γ and tile over Zn.

• Multiply by B and apply mod Λ
to get codebook.

• As q gets large, each codeword’s
marginal distribution looks
uniform over V.

• Codewords are pairwise
independent so we can apply the
union bound.

x = [BγGw] mod Λ

MMSE Scaling

• Erez-Zamir ’04: Prior to taking mod Λ, scale by α.

ỹ = [αy] mod Λ

= [αx+ αz] mod Λ

= [x+ αz− (1− α)x] mod Λ

Effective Noise

• For now, ignore that the effective noise is not independent of the
codeword. Effective noise variance NEFFEC = α2N + (1− α)2P .

• Optimal choice of α is the MMSE coefficient αMMSE =
P

N + P
.

NEFFEC = α2
MMSEN + (1− αMMSE)

2P =
PN

N + P

C =
1

2
log

(

P

NEFFEC

)

=
1

2
log

(

1 +
P

N

)

Dithering

• Now the noise is dependent on the
codeword.

• Dithering can solve this problem (just as in
the discrete case).

• Map message w to a lattice codeword t.

• Generate a random dither vector d
uniformly over V.

• Transmitter sends a dithered codeword:

x = [t+ d] mod Λ

• x is now independent of the codeword t.

Decoding – Remove Dither First

• Transmitter sends dithered codeword x = [t+ d] mod Λ.

• After scaling the channel output y by α, the decoder subtracts the
dither d.

ỹ = [αy − d] mod Λ

= [αx+ αz− d] mod Λ

= [x− d+ αz− (1− α)x] mod Λ

=
[

[t+ d] mod Λ− d+ αz− (1− α)x
]

mod Λ

= [t+ αz− (1− α)x] mod Λ Distributive Law

• Effective noise is now independent from the codeword t.

• By the probabilistic method, (at least) one good fixed dither exists.
No common randomness necessary.

Summary

• Linear code embedded in the integer lattice:

R =
1

2
log

(

P

N

)

− 1

2
log

(

2πe

12

)

• Linear code embedded in the integer lattice, MMSE scaling:

R =
1

2
log

(

1+
P

N

)

− 1

2
log

(

2πe

12

)

• Linear code embedded in a good shaping lattice, MMSE scaling:

R =
1

2
log

(

1+
P

N

)

Theorem (Erez-Zamir ’04)

Nested lattice codes can achieve the AWGN capacity.

Outline

I. Interference

II. Compute-and-Forward

(a) Basic Ideas
(b) AWGN Case: Introduction to Lattice Codes
(c) AWGN Case: Lattice Codes for Compute-and-Forward
(d) Beyond the AWGN Case: A few thoughts

III. Interference: The Compute-and-Forward Perspective

IV. Single-Hop Networks

V. Multi-hop Networks

Decoding the Sum of Lattice Codewords

Encoders use the same nested
lattice codebook.

Transmit lattice codewords:

x1 = t1

x2 = t2

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ

Decoder recovers modulo sum.

[y] mod Λ

= [x1 + x2 + z] mod Λ

= [t1 + t2 + z] mod Λ

=
[

[t1 + t2] mod Λ + z
]

mod Λ Distributive Law

= [v + z] mod Λ

R =
1

2
log

(

P

N

)

Decoding the Sum of Lattice Codewords – MMSE Scaling

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

x1 = [t1 + d1] mod Λ

x2 = [t2 + d2] mod Λ

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ

Decoder scales by α, removes dithers, recovers modulo sum.

[αy − d1 − d2] mod Λ

= [α(x1 + x2 + z)− d1 − d2] mod Λ

= [x1 + x2 − (1− α)(x1 + x2) + αz− d1 − d2] mod Λ

=
[

[t1 + t2] mod Λ− (1− α)(x1 + x2) + αz
]

mod Λ

= [v − (1− α)(x1 + x2) + αz] mod Λ

Effective Noise NEFFEC = (1− α)22P + α2N

Decoding the Sum of Lattice Codewords – MMSE Scaling

• Effective noise after scaling is NEFFEC = (1− α)22P + α2N .

• Minimized by setting α to be the MMSE coefficient:

αMMSE =
2P

N + 2P

• Plugging in, we get

NEFFEC =
2NP

N + 2P

• Resulting rate is

R =
1

2
log

(

P

NEFFEC

)

=
1

2
log

(

1

2
+

P

N

)

• Getting the full “one plus” term is an open challenge. Does not
seem possible with nested lattices.

From Messages to Lattice Points and Back

• Map messages to lattice points

t1 = φ(w1) = [BγGw1] mod Λ

t2 = φ(w2) = [BγGw2] mod Λ

• Mapping between finite field messages and lattice codewords
preserves linearity:

φ−1
(

[t1 + t2] mod Λ
)

= w1 ⊕w2

• This means that after decoding a mod Λ equation of lattice points
we can immediately recover the finite field equation of the messages.
See Nazer-Gastpar ’11 for more details.

Summary: Finite Field Computation over a Gaussian MAC

Map messages to lattice points:

t1 = φ(w1)

t2 = φ(w2)

Transmit dithered codewords:

x1 = [t1 + d1] mod Λ

x2 = [t2 + d2] mod Λ

w1 E1
x1

w2 E2
x2

z

y
D û

u = w1 ⊕w2

• If decoder can recover [t1 + t2] mod Λ, it also can get the sum of
the messages

w1 ⊕w2 = φ−1
(

[t1 + t2] mod Λ
)

.

• Achievable rate R =
1

2
log

(

1

2
+

P

N

)

.

Lattice Codes for Computation

All users pick the same nested lattice code: Choose messages over
field wi ∈ F

k
p: Map wi to lattice point in ΛFINE mod ΛCOARSE:

Transmit lattice points over the channel: Decode the sum:

w2

w1
x1

x2

z

y

Decoding is successful whenever R ≤ 1
2 log2

(

1
2 + SNR

)

Lattice Codes for Compute-and-Forward

Theorem

For the K-user Gaussian MAC with unit gains, a receiver can decode
∑

wi at rate:

R =
1

2
log

(

1

K
+

P

N

)

Note: Constructive proof requires lattices generated from q-ary codes,
where q is generally arbitrarily large.

Lattice Codes for Compute-and-Forward: Direct Sum

• Want sum of messages
∑M

i=1wi

• Channel is perfectly matched y =
∑M

i=1 xi + z

M = 2

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

R
at

e
pe

r
U

se
r

SNR in dB

Upper Bound

Computation Code

Decode Everything

Computation over Fading Channels

w1 E1
x1

h1

w2 E2
x2 h2

wK EK
xK

hK...

z

y
D û

u =
K
⊕

ℓ=1

aℓwℓ

Computation over Fading Channels

• Map messages to lattice points tℓ = φ(wℓ).
• Transmit dithered codewords xℓ = [tℓ + dℓ] mod Λ
• Receiver removes dithers and decodes an integer combination which
can be mapped back to Fq to recover

⊕

ℓ aℓwℓ.

[

y−
L
∑

ℓ=1

aℓdℓ

]

mod Λ

=
[

L
∑

ℓ=1

hℓxℓ + z−
L
∑

ℓ=1

aℓdℓ

]

mod Λ

=
[

L
∑

ℓ=1

aℓ(xℓ − dℓ) +

L
∑

ℓ=1

(hℓ − aℓ)xℓ + z
]

mod Λ

=

[

[

L
∑

ℓ=1

aℓtℓ

]

mod Λ +

L
∑

ℓ=1

(hℓ − aℓ)xℓ + z

]

mod Λ Distributive Law

Effective Noise

Computation over Fading Channels – Effective Noise

• Effective noise due to mismatch between channel coefficients
h = [h1 · · · hL]T and equation coefficients a = [a1 · · · aL]T .

NEFFEC = 1 + SNR‖h− a‖2

R =
1

2
log

(

SNR

1 + SNR‖h− a‖2
)

• Can do better with MMSE scaling.

αy =

L
∑

ℓ=1

aℓxℓ +

L
∑

ℓ=1

(αhℓ − aℓ)xℓ + αz

R = max
α

1

2
log

(

SNR

α2 + SNR‖αh − a‖2
)

=
1

2
log

(

1 + SNR‖h‖2
‖a‖2 + SNR(‖h‖2‖a‖2 − (hTa)2)

)

• Practical codes and constellations: Feng-Silva-Kschischang ’10, Hern

and Narayanan ’11, Ordentlich and Erez ’10, Osmane and Belfiore ’11

Compute-and-Forward Theorem

Theorem (Nazer-Gastpar 2009, IT Trans 2011)

For the Gaussian MAC with coefficients h = [h1 · · · hL]T , unknown to
the transmitters, it is possible to decode the finite-field sum of the
messages with coefficients a = [a1 · · · aL]T at rate

R = max
α

1

2
log

(

SNR

α2 + SNR‖αh− a‖2
)

=
1

2
log

(

1 + SNR‖h‖2
‖a‖2 + SNR(‖h‖2‖a‖2 − (hTa)2)

)

Compute-and-Forward – Multiple Receivers

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

D1 û1

D2 û2

...

DK ûK

• No channel state information (CSI) at transmitters.
• Receivers use CSI to select coefficients, decode linear equation

uk =
K
⊕

ℓ=1

akℓwℓ

• Reliable decoding possible if

R < min
k:akℓ 6=0

1

2
log

(

N + P‖hk‖2
N‖ak‖2 + P (‖hk‖2‖ak‖2 − (hT

k ak)
2)

)

Outline

I. Interference

II. Compute-and-Forward

III. Interference: The Compute-and-Forward Perspective

IV. Single-Hop Networks

V. Multi-hop Networks

Interference: The Compute-and-Forward Perspective

w1 E1
x1

w2 E2
x2

pY4|X1X2

y4 R4 x4

pY3|X1X2

y3 R3 x3

pY5|X3X4

y5 D5
ŵ1

ŵ2

Decode f3(w1,w2)

Decode f4(w1,w2)

Outline

I. Interference

II. Compute-and-Forward

III. Interference: The Compute-and-Forward Perspective

IV. Single-Hop Networks

(a) Fixed Channel Characteristics (“Single Channel”)
(b) Varying Channel Characteristics (“Parallel Channels”)

V. Multi-hop Networks

Many-to-One Interference Channel

• Only receiver 1 sees
interference:

y1 = x1 +

K
∑

ℓ=2

βℓxℓ + z1

w1 E1
x1

w2 E2
x2

β2

wK EK
xK

βK
.

.

.

.

.

.

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

DK ŵK

• “Compute-and-Forward” Approach: Encoders use the same nested
lattice codebook.

• Decoder D1 decodes linear equations of the messages.

• Additional twist: After decoding an equation, we can (partially)
remove it from the received signal.

Many-to-One Interference Channel

• Only receiver 1 sees interference:

y1 = x1 +

K
∑

ℓ=2

βℓxℓ + z1

Let us denote b = (1, β2, . . . , βK).

• It first decodes the equation

q
(1)
1 w1 + q

(1)
2 w2 + . . .+ q

(1)
K wK

where we collect the integer coefficients into the vector q(1).

• As we have seen, this works if the rate R is chosen to satisfy

R ≤ max
α

log+
(

P

‖αb − q(1)‖2P + α2N

)

Many-to-One Interference Channel

• Next, we form

y
(2)
1 = x1 +

K
∑

ℓ=2

βℓxℓ + z1−α′
1

(

K
∑

ℓ=1

q
(1)
ℓ xℓ

)

• From this, we decode

q
(2)
1 w1 + q

(2)
2 w2 + . . .+ q

(2)
K wK

where we collect the integer coefficients into the vector q(2).

• Again, this works if the rate R is chosen to satisfy

R ≤ max
α′
1,α2

log+
(

P

‖α2(b− α′
1q

(1))− q(2)‖2P + α2
2N

)

which we prefer to trivially rewrite as

R ≤ max
α1,α2

log+
(

P

‖α2b− α1q
(1) − q(2)‖2P + α2

2N

)

Many-to-One Interference Channel

• Next, we form

y
(3)
1 = x1 +

K
∑

ℓ=2

βℓxℓ + z1−α′
1

(

K
∑

ℓ=1

q
(1)
ℓ xℓ

)

− α′
2

(

K
∑

ℓ=1

q
(2)
ℓ xℓ

)

• From this, we decode

q
(3)
1 w1 + q

(3)
2 w2 + . . .+ q

(3)
K wK

where we collect the integer coefficients into the vector q(3).

• Again, this works if the rate R is chosen to satisfy

R ≤ max
α′
1,α

′
2,α3

1

2
log+

(

P

‖α3(b− α′
2q

(2) − α′
1q

(1))− q(3)‖2P + α2
3N

)

which we prefer to trivially rewrite as

R ≤ max
α1,α2,α3

1

2
log+

(

P

‖α3b− α2q
(2) − α1q

(1) − q(3)‖2P + α2
3N

)

Many-to-One Interference Channel

• At this point, we have decoded three equations, with coeffcients
q(1),q(2), and q(3), respectively.

• Of course, this is only useful if we can now use these to recover the
message w1.

• Suppose we have

q(1) = (1, 1, 2)

q(2) = (1,−5, 1)
q(3) = (−1, 3,−5)

Can we recover w1?

• Construct the 3×K matrix

Q =





q(1)

q(2)

q(3)





Let us denote the set of those matrices for which one can recover
the first component (i.e., w1) by Q1.

Many-to-One Interference Channel

• Construct the 3×K matrix

Q =





q(1)

q(2)

q(3)





Definition

Let Q1 be the set of those matrices for which one can recover the first
component (i.e., w1).

• Exercise: Give an explicit characterization of Q1. (For the 3×K
case, and then for the general L×K case.)

• Hint: Consider the matrix Q′, obtained from Q by removing the first
column.

Many-to-One Interference Channel

Theorem (Zhu-Gastpar, ISIT’13)

The following rates are achievable for the many-to-one interference networks

R1 ≤ max
L∈[1:K]
Q∈Q1

min
l∈[1:L]

Rcomp(q
(ℓ)

,q
(ℓ−1)

, . . . ,q
(1))

Rk ≤ min

{

1

2
log (1 + P) , R1

}

for k ∈ [2 : K]

where

Rcomp(q
(ℓ)

,q
(ℓ−1)

, . . . ,q
(1))

= max
α1,...,αℓ

1

2
log+







P
∥

∥

∥αℓb−
∑ℓ−1

j=1 αjq(j) − q(ℓ)

∥

∥

∥

2

P + α2
ℓN






.

Many-to-One Interference Channel

w1 E1
x1

w2 E2
x2

3.5

w3 E3
x2

3.5

w4 EK
x4

3.5

z1
y1

z2
y2

z3
y3

z4
y4

D1 ŵ1

D2 ŵ2

D3 ŵ3

D4 ŵ4

• Now, let P = 10.

• Then, the best equations turn out to be (in this order!)

q(1) = (1, 3, 3, 3), leading to Rcomp = 1.707

q(2) = (3, 10, 10, 10), leading to Rcomp = 1.782.

Many-to-One Interference Channel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
0
/bits

R
k/b

its

DPC

SND at Rx0

Compute and forward
C−F with time sharing

Outer bound

Many-to-One Interference Channel – Symmetric Very Strong Case

• Equal rates R.

• Good equations:

q(1) = (0, 1, 1, . . . , 1),

q(2) = (1, 0, 0, . . . , 0).

w1 E1
x1

w2 E2
x2

β

wK EK
xK

β
.

.

.

.

.

.

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

DK ŵK

From the theorem, we find...

Many-to-One Interference Channel – Symmetric Very Strong Case

• How big does β have to be to achieve R = 1
2 log

(

1 + P
N

)

?
(i.e. “very strong” case)

• Baseline scheme: Decode w2, . . . ,wK at receiver 1 and remove prior
to decoding w1.

R ≤ 1

2(K − 1)
log

(

1 +
β2(K − 1)P

N + P

)

Hence,

β2 ≥

(

(1 + P
N)K−1 − 1

)

(N + P)

(K − 1)P

• By contrast, for the “compute-and-forward” scheme:

β2 ≥ (P +N)2

PN

• Originally shown in Sridharan-Jafarian-Vishwanath-Jafar ’08 using
spherical shaping region. Nested lattice scheme: Nazer-Gastpar ’11.

Many-to-One Interference Channel – Approximate Capacity

• Further results can be obtained for the many-to-one interference
channel.

• Example: Lattices codes combined with the deterministic model can
approach the capacity region to within (3K + 3)(1 + log(K + 1))
bits per user. (Bresler-Parekh-Tse ’10).

Symmetric K-User Interference Channel

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

1 g · · · g

g 1 · · · g
...

...
. . .

...

g g · · · 1

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

...

DK ŵK

• Each transmitter wants to send a message to a single receiver.

• Possibility of interference alignment Cadambe-Jafar ’08, Motahari et al.

’09.
• Approximate capacity known in some special cases: two-user

Etkin-Tse-Wang ’08, many-to-one and one-to-many Bresler-Parekh-Tse

’10, cyclic Zhou-Yu ’10.

• Focus on the special case of symmetric cross-gains.

Effective Multiple-Access Channel

• Lattice codes can enable alignment on the signal scale.

• Each receiver sees an effective two-user multiple-access channel,

yk = xk + g
∑

ℓ 6=k

xℓ + zk .

• Idea: Successive cancellation. Decode and subtract interference
∑

ℓ 6=k xℓ before going after desired message.

• Only optimal when the interference is very strong, Sridharan et al. ’08.

• With the compute-and-forward transform we can approximate the
sum capacity in all regimes.

Generalized Degrees-of-Freedom

α212
3

1
2

d(α)
1

2
3

1
2

1
K

• Capacity understood in the high SNR regime. Jafar-Vishwanath ’10.

α =
log g2SNR

log SNR
d(α) = lim

SNR→∞

R(SNR)
1
2 log SNR

Alignment via Two Equations

• Each receiver sees an effective two-user multiple-access channel,

yk = xk + g
∑

ℓ 6=k

xℓ + zk .

• Decode two equations:

a1xk + a2
∑

ℓ 6=k

xℓ b1xk + b2
∑

ℓ 6=l

xℓ

• This allows us to operate close to the symmetric capacity, unlike
successive cancellation.

Symmetric K-User Interference Channel

20dB

35dB

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

3.5

g

S
um

−
ra

te
[b

its
/c

ha
nn

el
 u

se
]

6

Approximate Sum Capacity

• Using this technique, we can characterize the approximate sum
capacity of the symmetric K-user interference channel. See
Ordentlich-Erez-Nazer ’12 arXiv:1206.0197.

• Typical result:
Strong Interference Regime, 1 ≤ α < 2,

1

4
log(INR)− c+ 5

2
≤ Csym ≤

1

4
log(INR) +

1

2

for all channel gains except for an outage set of measure µ < 2−c for
any c > 0.

Outline

I. Interference

II. Compute-and-Forward

III. Interference: The Compute-and-Forward Perspective

IV. Single-Hop Networks

(a) Fixed Channel Characteristics (“Single Channel”)
(b) Varying Channel Characteristics (“Parallel Channels”)

V. Multi-hop Networks

Time-Varying Channels, Unknown at Tx

w1 E1
x1

h1

w2 E2
x2 h2

w3 E3
x3

h3

z

y
D û

u =

K
⊕

ℓ=1

aℓwℓ

• Fading coefficients h1, h2, h3 are iid Gaussian, unknown to the
transmitters.

• Fix a certain rate R. Decode either the equation of your choice or
one of the messages (which is a special case of an equation...).

• With what probability does the channel not support the rate R that
you fixed? (“Outage probability”)

Time-Varying Channels, Unknown at Tx

00.511.522.533.544.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message Rate

O
ut

ag
e

P
ro

ba
bi

lit
y

Decode an Equation

Decode a Message

30 dB

20 dB

10 dB

Time-Varying Channels, Unknown at Tx

• One can also study the average rate, averaged over the fading
behavior.

• But we here proceed to the case when the channel is known at the
Tx.

Time-Varying Channels, Known at Tx

w1 E1
X1[t]

w2 E2
X2[t]

w3 E3
X3[t]

HoddHeven

1 1 −1
−1 1 1
1 −1 1

1 −1 1

1 1 −1
−1 1 1

Z1[t]

Y1[t]

Z2[t]

Y2[t]

Z3[t]

Y3[t]

D1 ŵ1

D2 ŵ2

D3 ŵ3

• Decoder 1: w1 + w2 − w3 and w1 − w2 + w3 at R = 1
2 log2(

1
3 + P

N)

• Decoder 2: −w1 +w2 +w3 and w1 +w2−w3 at R = 1
2 log2(

1
3 +

P
N)

• Decoder 3: w1−w2 +w3 and −w1 +w2 +w3 at R = 1
2 log2(

1
3 +

P
N)

Time-Varying Channels, Known at Tx

• Hence, each user gets a rate of

R =
1

2
· 1
2
log2(

1

3
+

P

N
).

• Actually, we can do a little better: Simply add up the analog channel
outputs from even and odd channel. This leads to a new interference
channel:

Y1 = 2X1 + Z1 + Z ′
1

Y2 = 2X2 + Z2 + Z ′
2

Y3 = 2X3 + Z3 + Z ′
3

The per-user rate is now

R =
1

2
· 1
2
log2(1 +

2P

N
),

which can be shown to be exactly the (sum-rate) capacity of the
considered network.

Time-Varying Channels, Known at Tx

w1 1

w2 2

wK K

HHC

a1w1 + a2w2 + · · ·+ aKwK

a∗
1w1 − a2w2 − · · · − aKwK

w1

1

b1w1 + b2w2 + · · ·+ bKwK

−b1w1 + b∗2w2 − · · · − bKwK

w2

2

c1w1 + c2w2 + · · ·+ cKwK

−c1w1 − c2w2 − · · ·+ c∗KwK

wK

K

Time-Varying Channels, Known at Tx

For example, when the channel matrix changes over time...

w1 Tx 1
x1

w2 Tx 2
x2

...

wM Tx M
xM

H(t)

z1
y1

z2
y2

zM
yM

Rx 1 w1

Rx 2 w2

...

Rx M wM

• Time-varying
fading with i.i.d.
uniform phases.

• Transmitters know
H(t) before time t.

Key Idea

1. At time t with channel H, user k transmits signal Xk.

H =











h11 h12 · · · h1K
h21 h22 · · · h2K
...

...
. . .

...
hK1 hK2 · · · hKK











2. When complementary matrix HC occurs, retransmit signals Xk.

HC =











h11 −h12 · · · −h1K
−h21 h22 · · · −h2K
...

...
. . .

...
−hK1 −hK2 · · · hKK











± δ

3. Otherwise, transmit new signals and wait for their HC .

Pairing Up Channels

• We need to match up almost every matrix with its complement.

• Want a finite set of possible matrices H for analysis:

1. Quantize each channel coefficient to precision δ
(closest point in δ(Z + jZ)).

2. Set threshold hMAX. Throw out any matrix with |hkℓ| > hMAX.

• Choose δ, hMAX to get desired rate gap.

• Since phase is i.i.d. uniform, P (H) = P (HC).

Convergence in Type

Sequence of channel matrices Hn is ǫ-typical if:

∣

∣

∣

∣

1

n
N(H|Hn)− P (H)

∣

∣

∣

∣

≤ ǫ ∀H ∈ H

Lemma (Csiszar-Körner 2.12)

For any i.i.d. sequence, Hn, the probability of the set of all ǫ-typical
sequences, An

ǫ , is lower bounded by:

P (An
ǫ) ≥ 1− |H|

4nǫ2

Convergence in Type

H1 H1CH2 H2CH3 H3CH4 H4C

Rate

Channel Thresholding

Channel QuantizationUnpaired Matrices

Ergodic Interference Alignment

1. At time t with channel H, user k transmits signal Xk.

H =











h11 h12 · · · h1K
h21 h22 · · · h2K
...

...
. . .

...
hK1 hK2 · · · hKK











2. When complementary matrix HC occurs, retransmit signals Xk.

HC =











h11 −h12 · · · −h1K
−h21 h22 · · · −h2K
...

...
. . .

...
−hK1 −hK2 · · · hKK











±δ

3. Otherwise, transmit new signals and wait for their HC .

In this special case, there is an even simpler solution...











Y1(t)
Y2(t)
...

YK(t)





















Y1(tC)
Y2(tC)

...
YK(tC)





















h11 h12

h21 h22

...
...

hK1 hK2





















h11 −h12 · · · −h1K

−h21 h22 · · · −h2K

...
...

. . .
...

−hK1 −hK2 · · · hKK











± δ











X + Z(tC)



Y1(t) + Y1(tC)
 

2h11 0 · · · 0
 

Interference Channel Ergodic Capacity

Theorem (Nazer-Gastpar-Jafar-Vishwanath IEEE Trans Info Theory, 2012 (ISIT ’09))

Each user can achieve at least half its interference-free capacity at any
signal-to-noise ratio:

R =
1

2
E
[

log
(

1 + 2|hmm|2SNRm

)]

>
1

2
RFREE

• “Everybody gets half the cake!”

• For uniform phase fading and a large number of users, scheme
achieves the ergodic capacity.

• Can also show this approach achieves the ergodic capacity region for
finite field channel models.

Outline

I. Interference

II. Compute-and-Forward

III. Interference: The Compute-and-Forward Perspective

IV. Single-Hop Networks

V. Multi-hop Networks

(a) Fixed Channel Characteristics
(b) Varying Channel Characteristics

Multi-Hop Networks

x1

x2

H

z1

y1

z2

y2

x1x1 + x2 + z1

x2x1 − x2 + z2

x1

x2

• Two users want to send messages across the network with the help
of two relays.

• Strategy 1: Each relay decodes one message.

• Strategy 2: Relays send their observed signal to the destination
without decoding.

Multi-Hop Networks

• Interference can be useful!

• Not captured by bit pipe approach.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

SNR in dB

R
at

e
pe

r
U

se
r

Upper Bound

Compress

Decode

Multi-Hop Networks

x1

x2

z1

y1

z2

y2

x1 + x2

x1 − x2

x1

x2

• What if each relay could decode a linear equation?

• Compute-and-Forward: One relay decodes the sum of codewords.
Other relay decodes the difference.

Multi-Hop Networks

• Compute-and-Forward is nearly optimal!

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

SNR in dB

R
at

e
pe

r
U

se
r

Upper Bound

Compute

Compress

Decode

Multi-Hop Networks

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

1 1 · · · 1
1 1 · · · −1
...

...
. . .

...

1 −1 · · · −1

z1
y1

z2
y2

zK
yK

R1

x1R

R2

x2R

...

RK

xKR

z1R
y1R

z2R
y2R

zKR

yKR

D

ŵ1

ŵ2

...
ŵK

• Equal rates R. H is a Hadamard matrix, HHT = KI

Upper Bound Compute-and-Forward

1

2
log

(

1 +
P

N

)

1

2
log

(

1

K
+

P

N

)

Compress-and-Forward Decode-and-Forward

1

2
log

(

1 +
P

N

P

N +KP

)

1

2K
log

(

1 +
KP

N

)

Multi-Hop Networks

w1 E1

w2 E2

w3 E3

1 1 −1
−1 1 1
1 −1 1

Z1[t]

Z2[t]

Z3[t]

R1

R2

R3

1 0 1
1 1 0
0 1 1

Z ′
1[t]

Z ′
2[t]

Z ′
3[t]

D1

D2

D3

ŵ1

ŵ2

ŵ3

• Relay 1 decodes w1 +w2−w3, etc.

• In this example, because the two matrices are inverses of each other,
things work out perfectly. R = 1

2 log2(
1
3 + P

N).

• Remark: We could also simply use amplify-and-forward, at the
expense of noise amplification. Called Interference Neutralization
(Jeon et al, 2011). R = 1

2 log2(1 +
2P
3N).

Outline

I. Interference

II. Compute-and-Forward

III. Interference: The Compute-and-Forward Perspective

IV. Single-Hop Networks

V. Multi-hop Networks

(a) Fixed Channel Characteristics
(b) Varying Channel Characteristics

Rayleigh fading, unknown at Tx

w1

w2

Tx 1
x1

Tx 2
x2

H

z1
y1

z2
y2

Relay 1

Relay 2

R0

R0
Rx

ŵ1

ŵ2

• Rayleigh fading

• No channel state information (CSI) at transmitters.

• Compute-and-Forward strategy: Given CSI, each relay independently
selects the coefficients for an equation to decode, and forwards this
equation.

• Fix transmission rates, what is the probability that the channel
cannot support them? (“Outage probability”)

• Here, we flip the perspective: fix the outage probability (0.25 in our
example), maximize the rate.

Rayleigh fading, unknown at Tx

−5 0 5 10 15 20
0

0.5

1

1.5

2

Transmitter Power in dB

O
ut

ag
e

R
at

e
pe

r
U

se
r

Upper Bound

Best Equation

Best Non−Zero Eq.

Decode−and−Forward

Compress−and−Forward

Rayleigh fading, unknown at Tx

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

D1 û1

D2 û2

...

DK ûK

• Rayleigh fading

• No channel state information (CSI) at transmitters.

• Goal: K linearly independent equations are decoded.

Rayleigh fading, unknown at Tx

Some “negative” results for the high SNR behavior:

• It can be shown that this strategy achieves no more than two
(computation) degrees of freedom, irrespective of the number of
transmitter/receiver pairs (Niesen, Whiting, 2011).

• This is by contrast to one (message) degree of freedom for
Han-Kobayashi.

• It is also by contrast to K degrees of freedom when instead of
Rayleigh, the channel matrices are rational.

Time-Varying, known at Tx

• Now, suppose that the channel is known at the Tx ahead of time.

• Then, we can do interference alignment.

Time-Varying, known at Tx

Example:

y�[t]y�[t]
D�D���

n�[t]n�[t]

y�[t]y�[t]
D�D���

n�[t]n�[t]

H[t]H[t]

x�	[t]x�	[t]

x
�[t]x
�[t]

y�
[t]y�
[t]

n��[t]n��[t]

y��[t]y��[t]

n��[t]n��[t]

R�R�

R�R�

��

��

Ŵ�Ŵ�

Ŵ�Ŵ�

G[t]G[t]

x�[t]x�[t]
S�S�W�W�

x�[t]x�[t]
S�S�W�W�

• We can pair up each matrix H with its inverse G. (That is, find
appropriate time slots.)

• Then, we can apply the interference neutralization trick.
• Either via compute-and-forward
• Or via amplify-and-forward, if we are not worried about the noise
accumulation.

Time-Varying, known at Tx

For the amplify-and-forward strategy under uniform phase fading, we
can show the following:

Theorem (Wang-Jeon-Gastpar, ISIT’12)

RMIMO = log(1 + 4P + 2P 2) + log
(

1 +
√

1− (C(P))2
)

− 1,

RIN = 2 log

(

1 +
2P 2

1 + 4P

)

+ 2 log
(

1 +
√

1− (C(P))2
)

− 2,

where C(P) = 2P 2/(1 + 4P + 2P 2). Furthermore, for any P ≥ 0,

Csum −RIN ≤ 4.

Note: For Rayleigh fading, we can show that the gap is around 4.7
bits.

Concluding Remarks

• Compute-and-Forward is one quite natural approach to managing
interference:

• The mantra is: “Whenever signals collide/interfere, decode a function
of the messages, rather than the messages themselves.”

• If the function to be decoded is “similar” to the channel, there is hope
that the resulting rate will be interesting.

• There exist networks where it attains optimal performance (and no
other known strategy does).

• There exist practically relevant networks where it attains the best
known performance (e.g., distributed antenna systems).

• ...but: so far, the story is pretty much limited to linearly colliding
signals.

• On the positive side: for the linear case, the practical
implementation of Compute-and-Forward is possible essentially with
off-the-shelf components!

Main References To My Group’s Work

• B. Nazer and M. Gastpar. Reliable Physical-Layer Network Coding.
Proceedings of the IEEE, March 2011.

• B. Nazer and M. Gastpar. Compute-and-Forward: Harnessing
Interference Through Structured Codes. IEEE Transactions on
Information Theory, October 2011. (2013 Communications Society &

Information Theory Society Joint Paper Award)

• B. A. Nazer and M. Gastpar. Computing over multiple-access
channels with connections to wireless network coding. In
Proceedings of the 2006 IEEE International Symposium on
Information Theory (ISIT), Seattle, WA, July 2006.

