Interference Management: The Compute-and-Forward Perspective

Michael Gastpar, EPFL and UC Berkeley

Acknowledgement: Bobak Nazer

NEWCOM School on Interference Management, EURECOM
May 30, 2013
 FÉDÉRALE DE LAUSANNE

Outline

I. Interference
II. Compute-and-Forward
III. Interference: The Compute-and-Forward Perspective
IV. Single-Hop Networks
V. Multi-hop Networks

Interference

$$
\begin{aligned}
& \mathbf{w}_{1} \rightarrow \mathcal{E}_{1} \\
& \mathbf{w}_{2} \rightarrow \mathbf{x}_{1} \\
& \mathcal{E}_{2} \\
& \mathbf{x}_{2}
\end{aligned}
$$

Interference

Interference

What should an intermediate node do with interfering signals?

- It could decode all of the transmitted signals.
- It could compress its observation and forward this description.

To discuss these questions, we need a more formal framework, which we will introduce next.

The Usual Suspects:

- Message $\mathbf{w} \in\{0,1\}^{k}$
- Encoder $\mathcal{E}:\{0,1\}^{k} \rightarrow \mathcal{X}^{n}$
- Input $\mathbf{x} \in \mathcal{X}^{n}$
- Estimate $\hat{\mathbf{w}} \in\{0,1\}^{k}$
- Decoder $\mathcal{D}: \mathcal{Y}^{n} \rightarrow\{0,1\}^{k}$
- Output $\mathbf{y} \in \mathcal{Y}^{n}$
- Memoryless Channel $p(\mathbf{y} \mid \mathbf{x})=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)$
- Rate $R=\frac{k}{n}$.
- (Average) Probability of Error: $\mathbb{P}\{\hat{\mathbf{w}} \neq \mathbf{w}\} \rightarrow 0$ as $n \rightarrow \infty$. Assume \mathbf{w} is uniform over $\{0,1\}^{k}$.
- Generate $2^{n R}$ codewords $\mathbf{x}=\left[\begin{array}{llll}X_{1} & X_{2} & \cdots & X_{n}\end{array}\right]$ independently and elementwise i.i.d. according to some distribution p_{X}

$$
p(\mathbf{x})=\prod_{i=1}^{n} p_{X}\left(x_{i}\right)
$$

- Bound the average error probability for a random codebook.
- If the average performance over
 codebooks is good, there must exist at least one good fixed codebook.
- Two sequences \mathbf{x} and \mathbf{y} are (weakly) jointly typical if

$$
\begin{array}{r}
\left|-\frac{1}{n} \log p(\mathbf{x})-H(X)\right|<\epsilon \\
\left|-\frac{1}{n} \log p(\mathbf{y})-H(Y)\right|<\epsilon \\
\left|-\frac{1}{n} \log p(\mathbf{x}, \mathbf{y})-H(X, Y)\right|<\epsilon
\end{array}
$$

- For our considerations, weak typicality is convenient as it can also be stated in terms of differential entropies.
- If \mathbf{x} and \mathbf{y} are i.i.d. sequences, the probability that they are jointly typical goes to 1 as n goes to infinity.

Joint Typicality Decoding

Decoder looks for a codeword that is jointly typical with the received sequence \mathbf{y}

Error Events

1. Transmitted codeword \mathbf{x} is not jointly typical with \mathbf{y}.
\Longrightarrow Low probability by the Weak Law of Large Numbers.

2. Another codeword $\tilde{\mathbf{x}}$ is jointly typical with \mathbf{y}.

Cuckoo's Egg Lemma

Let $\tilde{\mathbf{x}}$ be an i.i.d. sequence that is independent from the received sequence \mathbf{y}.

$$
\mathbb{P}\{(\tilde{\mathbf{x}}, \mathbf{y}) \text { is jointly typical }\} \leq 2^{-n(I(X ; Y)-3 \epsilon)}
$$

See Cover and Thomas.

Point-to-Point Capacity

- We can upper bound the probability of error via the union bound:

$$
\begin{aligned}
\mathbb{P}\{\hat{\mathbf{w}} \neq \mathbf{w}\} & \leq \sum_{\tilde{\mathbf{w}} \neq \mathbf{w}} \mathbb{P}\{(\mathbf{x}(\tilde{\mathbf{w}}), \mathbf{y}) \\
& \text { is jointly typical. }\} \\
& \leq 2^{-n(I(X ; Y)-R-3 \epsilon)} \quad \leftarrow \text { Cuckoo's Egg Lemma }
\end{aligned}
$$

- If $R<I(X ; Y)$, then the probability of error can be driven to zero as the blocklength increases.

Theorem (Shannon '48)

The capacity of a point-to-point channel is $C=\max _{p_{X}} I(X ; Y)$.

- Rate Region: Set of rates $\left(R_{1}, R_{2}\right)$ such that the encoders can send \mathbf{w}_{1} and \mathbf{w}_{2} to the decoder with vanishing probability of error

$$
\mathbb{P}\left\{\left(\hat{\mathbf{w}}_{1}, \hat{\mathbf{w}}_{2}\right) \neq\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)\right\} \rightarrow 0 \text { as } m \rightarrow \infty
$$

Multiple-Access Channels

Rate Region (Ahlswede, Liao)

Convex closure of all (R_{1}, R_{2}) satisfying

$$
\begin{aligned}
R_{1} & <I\left(X_{1} ; Y \mid X_{2}\right) \\
R_{2} & <I\left(X_{2} ; Y \mid X_{1}\right) \\
R_{1}+R_{2} & <I\left(X_{1}, X_{2} ; Y\right)
\end{aligned}
$$

for some $p\left(x_{1}\right) p\left(x_{2}\right)$.

Outline

I. Interference
II. Compute-and-Forward
(a) Basic Ideas
(b) AWGN Case: Introduction to Lattice Codes
(c) AWGN Case: Lattice Codes for Compute-and-Forward
(d) Beyond the AWGN Case: A few thoughts

III. Interference: The Compute-and-Forward Perspective

IV. Single-Hop Networks
V. Multi-hop Networks

The Usual Suspects:

- Message $\mathbf{w} \in\{0,1\}^{k}$
- Encoder $\mathcal{E}:\{0,1\}^{k} \rightarrow \mathcal{X}^{n}$
- Input $\mathbf{x} \in \mathcal{X}^{n}$
- Estimate $\hat{\mathbf{w}} \in\{0,1\}^{k}$
- Decoder $\mathcal{D}: \mathcal{Y}^{n} \rightarrow\{0,1\}^{k}$
- Output $\mathbf{y} \in \mathcal{Y}^{n}$
- Memoryless Channel $p(\mathbf{y} \mid \mathbf{x})=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)$
- Rate $R=\frac{k}{n}$.
- (Average) Probability of Error: $\mathbb{P}\{\hat{\mathbf{w}} \neq \mathbf{w}\} \rightarrow 0$ as $n \rightarrow \infty$. Assume \mathbf{w} is uniform over $\{0,1\}^{k}$.

Linear Codes

- Linear Codebook: A linear map between messages and codewords (instead of a lookup table).

$\underline{q \text {-ary Linear Codes }}$

- Represent message w as a length- k vector over \mathbb{F}_{q}.
- Codewords \mathbf{x} are length- n vectors over \mathbb{F}_{q}.
- Encoding process is just a matrix multiplication, $\mathbf{x}=\mathbf{G w}$.

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{cccc}
g_{11} & g_{12} & \cdots & g_{1 k} \\
g_{21} & g_{22} & \cdots & g_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n 1} & g_{n 2} & \cdots & g_{n k}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{k}
\end{array}\right]
$$

- Recall that, for prime q, operations over \mathbb{F}_{q} are just $\bmod q$ operations over the reals.
- Rate $R=\frac{k}{n} \log q$
- Linear code looks like a regular subsampling of the elements of \mathbb{F}_{q}^{n}.
- Random linear code: Generate each element $g_{i j}$ of the generator matrix \mathbf{G} elementwise i.i.d. according to a uniform distribution over $\{0,1,2, \ldots, q-1\}$.
- How are the codewords distributed?

Codeword Distribution

It is convenient to instead analyze the shifted ensemble $\overline{\mathbf{x}}=\mathbf{G w} \oplus \mathbf{v}$ where \mathbf{v} is an i.i.d. uniform sequence. (See Gallager.)

Shifted Codeword Properties

1. Marginally uniform over \mathbb{F}_{q}^{n}. For a given message \mathbf{w}, the codeword $\overline{\mathbf{x}}$ looks like an i.i.d. uniform sequence.

$$
\mathbb{P}\{\overline{\mathbf{x}}=\mathrm{x}\}=\frac{1}{q^{n}} \quad \text { for all } \mathrm{x} \in \mathbb{F}_{q}^{n}
$$

2. Pairwise independent. For $\mathbf{w}_{1} \neq \mathbf{w}_{2}$, codewords $\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}$ are independent.

$$
\mathbb{P}\left\{\overline{\mathbf{x}}_{\mathbf{1}}=\mathrm{x}_{1}, \overline{\mathbf{x}}_{\mathbf{2}}=\mathrm{x}_{2}\right\}=\frac{1}{q^{2 n}}=\mathbb{P}\left\{\overline{\mathbf{x}}_{1}=\mathrm{x}_{1}\right\} \mathbb{P}\left\{\overline{\mathbf{x}}_{2}=\mathrm{x}_{2}\right\}
$$

Achievable Rates

- Cuckoo's Egg Lemma only requires independence between the true codeword $\mathbf{x}(\mathbf{w})$ and the other codeword $\mathbf{x}(\tilde{\mathbf{w}})$. From the union bound:

$$
\begin{aligned}
\mathbb{P}\{\hat{\mathbf{w}} \neq \mathbf{w}\} & \leq \sum_{\tilde{\mathbf{w}} \neq \mathbf{w}} \mathbb{P}\{(\mathbf{x}(\tilde{\mathbf{w}}), \mathbf{y}) \text { is jointly typical. }\} \\
& \leq 2^{-n(I(X ; Y)-R-3 \epsilon)}
\end{aligned}
$$

- This is exactly what we get from pairwise independence.
- Thus, there exists a good fixed generator matrix \mathbf{G} and shift \mathbf{v} for any rate $R<I(X ; Y)$ where X is uniform.

Removing the Shift

- For a binary symmetric channel (BSC), the output can be written as the modulo sum of the input plus i.i.d. $\operatorname{Bernoulli}(p)$ noise,

$$
\begin{aligned}
& \overline{\mathbf{y}}=\overline{\mathbf{x}} \oplus \mathbf{z} \\
& \overline{\mathbf{y}}=\mathbf{G w} \oplus \mathbf{v} \oplus \mathbf{z}
\end{aligned}
$$

- Due to this symmetry, the probability of error depends only on the realization of the noise vector \mathbf{z}.
\Longrightarrow For a BSC, $\mathbf{x}=\mathbf{G w}$ is a good code as well.
- We can now assume the existence of good generator matrices for channel coding.

Random I.I.D. vs. Random Linear

- What have we gotten for linearity (so far)? Simplified encoding. (Decoder is still quite complex.)
- What have we lost?

Can only achieve $R=I(X ; Y)$ for uniform X instead of $\max I(X ; Y)$.
p_{X}

- In fact, this is a fundamental limitation of group codes, Ahlswede '71.
- Workarounds: symbol remapping Gallager '68, nested linear codes
- Are random linear codes strictly worse than random i.i.d. codes?

Computation over Multiple-Access Channels

- Rate Region: Set of rates $\left(R_{1}, R_{2}\right)$ such that the decoder can recover $f\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)$ with vanishing probability of error

$$
\mathbb{P}\left\{\hat{\mathbf{u}} \neq f\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)\right\} \rightarrow 0 \text { as } m \rightarrow \infty
$$

Finite-Field Multiple-Access Channels

- Receiver observes noisy modulo sum of codewords $\mathbf{y}=\mathbf{x}_{1} \oplus \mathbf{x}_{2} \oplus \mathbf{z}$

Finite Field MAC Rate Region

All rates $\left(R_{1}, R_{2}\right)$ satisfying

$$
R_{1}+R_{2} \leq \log q-H(Z)
$$

Computation over Finite Field Multiple-Access Channels

- Independent msgs $\mathbf{w}_{1}, \mathbf{w}_{2} \in \mathbb{F}_{q}^{k}$.
- Want the sum $\mathbf{u}=\mathbf{w}_{1} \oplus \mathbf{w}_{2}$ with vanishing prob. of error $\mathbb{P}\{\hat{\mathbf{u}} \neq \mathbf{u}\} \rightarrow 0$

I.I.D. Random Coding

- Generate $2^{n R_{1}}$ i.i.d. uniform codewords for user 1.
- Generate $2^{n R_{2}}$ i.i.d. uniform codewords for user 2.
- With high probability, (nearly) all sums of codewords are distinct.
- This is ideal for multiple-access but not for computation.
- Need $R_{1}+R_{2} \leq \log q-H(Z)$

Random i.i.d. codes are not good for computation
$2^{n R_{1}}$ codewords

$2^{n R_{2}}$ codewords
$2^{n\left(R_{1}+R_{2}\right)}$ modulo sums of codewords

Computation over Finite Field Multiple-Access Channels

Independent msgs $\mathbf{w}_{1}, \mathbf{w}_{2}$.
Want the sum $\mathbf{u}=\mathbf{w}_{1} \oplus \mathbf{w}_{2}$ with vanishing prob. of error $\mathbb{P}\{\hat{\mathbf{u}} \neq \mathbf{u}\} \rightarrow 0$

Random Linear Coding

- Same linear code at both transmitters $\mathbf{x}_{1}=\mathbf{G w}_{1}, \mathbf{x}_{2}=\mathbf{G w}_{2}$.
- Sums of codewords are themselves codewords:

$$
\begin{aligned}
\mathbf{y} & =\mathbf{x}_{1} \oplus \mathbf{x}_{2} \oplus \mathbf{z} \\
& =\mathbf{G} \mathbf{w}_{1} \oplus \mathbf{G} \mathbf{w}_{2} \oplus \mathbf{z} \\
& =\mathbf{G}\left(\mathbf{w}_{1} \oplus \mathbf{w}_{2}\right) \oplus \mathbf{z} \\
& =\mathbf{G} \mathbf{u} \oplus \mathbf{z}
\end{aligned}
$$

- Need $\max \left(R_{1}, R_{2}\right) \leq \log q-H(Z)$

Random linear codes are good for computation
$2^{n R_{1}}$ codewords

$2^{n \max \left(R_{1}, R_{2}\right)}$ modulo sums of codewords
$2^{n R_{2}}$ codewords

- I.I.D. Random Coding: $R_{1}+R_{2} \leq \log q-H(Z)$
- Random Linear Coding: $\max \left(R_{1}, R_{2}\right) \leq \log q-H(Z)$
- Linear codes double the sum rate without any dependency.
- Is this useful for sending messages (no computation)?

Computation over More General MACs

- Consider the following model:

- Find an achievable computation rate.

Computation over More General MACs

- One possibly interesting rate is attained by using the same binary linear code at both transmitters.
- Then, the resulting computation rate is simply $R=I(W ; Y)$, where W is Bernoulli(1/2).

Gaussian Multiple-Access Channel: Capacity

Rate Region

$$
\begin{aligned}
R_{1} & <\frac{1}{2} \log \left(1+\frac{P_{1}}{N}\right) \\
R_{2} & <\frac{1}{2} \log \left(1+\frac{P_{2}}{N}\right) \\
R_{1}+R_{2} & <\frac{1}{2} \log \left(1+\frac{P_{1}+P_{2}}{N}\right)
\end{aligned}
$$

Power constraints P_{1}, P_{2}. Noise variance N.

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

How can we extend this to the Gaussian Multiple-Access Channel?

- Let us assume $P=P_{1}=P_{2}$, and introduce, for simplicity, SNR $=P / N$.
- Then, consider the following simple approach for the computation problem:

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

Let us use a simple sub-optimal decoding step:

- Step 1: for each symbol, decide between $-2,0,2$.
- Step 2: Map: 0 to 1 , and both -2 and 2 to 0 . Overall, this leads to a binary asymmetric channel.
- Step 3: ML decoding with respect to the code.

Exercise: Calculate the rate at which we can decode the modulo-2 sum.

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

Exercise: Calculate the rate at which we can decode the modulo-2 sum.

Solution:

- Since both users use the same code, the overall scenario can be thought of as a point-to-point channel with a binary input.
- 0 is flipped to 1 with probability $Q(\sqrt{\mathrm{SNR}})-Q(3 \sqrt{\mathrm{SNR}})$.
- 1 is flipped to 0 with probability $2 Q(\sqrt{\mathrm{SNR}})$.
- On this channel, we are using a uniform input distribution.
- Hence, the rate is equal to the mutual information across this channel, evaluated for uniform inputs.

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

Two users:

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

Two users, detail:

Gaussian Multiple-Access Channels: Mod-2 Sum Computation?

Three users:

The Role of Alphabet ("field") Size

- In binary, the rate can be at most one.
- This may be acceptable in low-SNR.
- In high SNR, it appears inevitable to consider larger alphabets...

Outline

I. Interference
II. Compute-and-Forward
(a) Basic Ideas
(b) AWGN Case: Introduction to Lattice Codes
(c) AWGN Case: Lattice Codes for Compute-and-Forward
(d) Beyond the AWGN Case: A few thoughts
III. Interference: The Compute-and-Forward Perspective
IV. Single-Hop Networks
V. Multi-hop Networks

Lattices

- A lattice Λ is a discrete subgroup of \mathbb{R}^{n}.
- Can write a lattice as a linear transformation of the integer vectors,

$$
\Lambda=\mathbf{B} \mathbb{Z}^{n}
$$

for some $\mathbf{B} \in \mathbb{R}^{n \times n}$.
Lattice Properties

- Closed under addition: $\lambda_{1}, \lambda_{2} \in \Lambda \Longrightarrow \lambda_{1}+\lambda_{2} \in \Lambda$.
- Symmetric: $\lambda \in \Lambda \Longrightarrow-\lambda \in \Lambda$ \mathbb{Z}^{n} is a simple lattice.
- Nearest neighbor quantizer:

$$
Q_{\Lambda}(\mathbf{x})=\underset{\lambda \in \Lambda}{\arg \min }\|\mathbf{x}-\lambda\|_{2}
$$

- The Voronoi region of a lattice point is the set of all points that quantize to that lattice point.
- Fundamental Voronoi region \mathcal{V} : points that quantize to the origin,

$$
\mathcal{V}=\left\{\mathbf{x}: Q_{\Lambda}(\mathbf{x})=\mathbf{0}\right\}
$$

- Each Voronoi region is just a shift of

-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
\bullet	\bullet	-	-	-	-	-	-	\bullet
-	\bullet	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
\bullet	\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet
-	-	-	-	-	-	-	-	\bullet
-	\bullet	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
\bullet	\bullet	-	\bullet	-	\bullet	\bullet	\bullet	\bullet

Lattice Tricks

(1) Observing the power constraint: Nested Lattices
(2) Proving achievable rates:

- Dithering
- "MMSE Scaling"

Nested Lattices

- Two lattices Λ and $\Lambda_{\text {fine }}$ are nested if $\Lambda \subset \Lambda_{\text {FINE }}$
- Nested Lattice Code: All lattice points from $\Lambda_{\text {FINE }}$ that fall in the fundamental Voronoi region \mathcal{V} of Λ.
- \mathcal{V} acts like a power constraint

$$
\text { Rate }=\frac{1}{n} \log \left(\frac{\operatorname{Vol}(\mathcal{V})}{\operatorname{Vol}\left(\mathcal{V}_{\mathrm{FINE}}\right)}\right)
$$

Nested Lattice Codes from q-ary Linear Codes

- Choose an $n \times k$ generator matrix $\mathbf{G} \in \mathbb{F}_{q}^{n \times k}$ for q-ary code.
- Integers serve as coarse lattice, $\Lambda=\mathbb{Z}^{n}$.
- Map elements $\{0,1,2, \ldots, q-1\}$ to equally spaced points between $-1 / 2$ and $1 / 2$.
- Place codewords $\mathbf{x}=\mathbf{G w}$ into
 the fundamental Voronoi region $\mathcal{V}=[-1 / 2,1 / 2)^{n}$

Modulo Operation

- Modulo operation with respect to lattice Λ is just the residual quantization error,

$$
[\mathbf{x}] \bmod \Lambda=\mathbf{x}-Q_{\Lambda}(\mathbf{x})
$$

- Mimics the role of $\bmod q$ in q-ary alphabet.
- Distributive Law:

$$
\begin{aligned}
& {\left[\mathbf{x}_{1}+\left[\mathbf{x}_{2}\right] \bmod \Lambda\right] \bmod \Lambda} \\
& =\left[\mathbf{x}_{1}+\mathbf{x}_{2}\right] \bmod \Lambda
\end{aligned}
$$

$\bmod \Lambda A W G N$ Channel

- Codebook lives on Voronoi region \mathcal{V} of coarse lattice Λ.
- Take $\bmod \Lambda$ of received signal prior to decoding.
- What is the capacity of the $\bmod \Lambda$ channel?

Using random i.i.d. code drawn over $\mathcal{V}: \quad C=\frac{1}{n} \max _{p(\mathbf{x})} I(\mathbf{x} ; \tilde{\mathbf{y}})$

$\bmod \Lambda A W G N$ Channel Capacity

$$
\begin{aligned}
n C & =\max _{p(\mathbf{x})} I(\mathbf{x} ; \tilde{\mathbf{y}}) \\
& =\max _{p(\mathbf{x})}(h(\tilde{\mathbf{y}})-h(\tilde{\mathbf{y}} \mid \mathbf{x})) \\
& =\max _{p(\mathbf{x})}(h(\tilde{\mathbf{y}})-h([\mathbf{z}] \bmod \Lambda)) \quad \text { Distributive Law } \\
& \geq \max _{p(\mathbf{x})}(h(\tilde{\mathbf{y}})-h(\mathbf{z})) \quad \text { Point Symmetry of Voronoi Region } \\
& =\max _{p(\mathbf{x})}\left(h(\tilde{\mathbf{y}})-\frac{n}{2} \log (2 \pi e N)\right) \quad \text { Entropy of Gaussian Noise }
\end{aligned}
$$

$\bmod \Lambda$ AWGN Channel Capacity

- Channel output entropy is equal to the logarithm of the Voronoi region volume if it is uniform over \mathcal{V} :

$$
h(\tilde{\mathbf{y}})=\log (\operatorname{Vol}(\mathcal{V})) \quad \text { if } \tilde{\mathbf{y}} \sim \operatorname{Unif}(\mathcal{V})
$$

- $\tilde{\mathbf{y}}=[\mathbf{x}+\mathbf{z}] \bmod \Lambda$ is uniform over \mathcal{V} if \mathbf{x} is uniform over \mathcal{V}.
- Random i.i.d. coding over the Voronoi region \mathcal{V} can achieve:

$$
R=\frac{1}{n} \log (\operatorname{Vol}(\mathcal{V}))-\frac{1}{2} \log (2 \pi e N)
$$

Power Constraints and Second Moments

- Must scale lattice Λ so that the uniform distribution over the Voronoi region \mathcal{V} meets the power constraint P.
- Set second moment $\sigma_{\Lambda}^{2}=\frac{1}{n \operatorname{Vol}(\mathcal{V})} \int_{\mathcal{V}}\|\mathbf{x}\|^{2} d \mathbf{x}$ equal to P.

$$
\begin{aligned}
& \text { Normalized Second Moment: } \quad G(\Lambda)=\frac{\sigma_{\Lambda}^{2}}{(\operatorname{Vol}(\mathcal{V}))^{2 / n}} \\
& \Longrightarrow \frac{1}{n} \log (\operatorname{Vol}(\mathcal{V}))=\frac{1}{2} \log \left(\frac{\sigma_{\Lambda}^{2}}{G(\Lambda)}\right)=\frac{1}{2} \log \left(\frac{P}{G(\Lambda)}\right)
\end{aligned}
$$

$\bmod \Lambda A W G N$ Channel Capacity

- Random i.i.d. coding over the Voronoi region \mathcal{V} can achieve:

$$
\begin{aligned}
C & \geq \frac{1}{n} \log (\operatorname{Vol}(\mathcal{V}))-\frac{1}{2} \log (2 \pi e N) \\
& =\frac{1}{2} \log \left(\frac{P}{G(\Lambda)}\right)-\frac{1}{2} \log (2 \pi e N) \\
& =\frac{1}{2} \log \left(\frac{P}{N}\right)-\frac{1}{2} \log (2 \pi e G(\Lambda))
\end{aligned}
$$

What is $G(\Lambda)$?

- The normalized second moment $G(\Lambda)$ is a dimensionless quantity that captures the shaping gain.
- Integer lattice is not so bad, $G\left(\mathbb{Z}^{n}\right)=1 / 12$.
- Capacity under $\bmod \mathbb{Z}^{n}$ is at least

$$
\begin{aligned}
C & \geq \frac{1}{2} \log \left(\frac{P}{N}\right)-\frac{1}{2} \log \left(\frac{2 \pi e}{12}\right) \\
& \approx \frac{1}{2} \log \left(\frac{P}{N}\right)-0.255
\end{aligned}
$$

Asymptotically Good $G(\Lambda)$

Theorem (Zamir-Feder-Poltyrev '94)

There exists a sequence of lattices $\Lambda^{(n)}$ such that $\lim _{n \rightarrow \infty} G\left(\Lambda^{(n)}\right)=\frac{1}{2 \pi e}$.

- Best possible normalized second moment is that of a sphere.
- Using a sequence $\Lambda^{(n)}$ with an asymptotically good $G\left(\Lambda^{(N)}\right)$ allows to approach

$$
\begin{aligned}
R & =\frac{1}{2} \log \left(\frac{P}{N}\right)-\frac{1}{2} \log \left(\frac{2 \pi e}{2 \pi e}\right) \\
& =\frac{1}{2} \log \left(\frac{P}{N}\right)
\end{aligned}
$$

Asymptotically Good $G(\Lambda)$

- Can actually get this with a linear code tiled over \mathbb{Z}^{n} (see, for instance, Erez-Litsyn-Zamir '05.)
- Many works looking at this from different perspectives.
- We will just assume existence.

Properties of Random Linear Codes

Recall the two key properties of random linear codes \mathbf{G} from earlier:

Codeword Properties

1. Marginally uniform over \mathbb{F}_{q}^{n}. For a given message $\mathbf{w} \neq \mathbf{0}$, the codeword $\mathbf{x}=\mathbf{G w}$ looks like an i.i.d. uniform sequence.

$$
\mathbb{P}\{\mathbf{x}=\mathrm{x}\}=\frac{1}{q^{n}} \quad \text { for all } \mathrm{x} \in \mathbb{F}_{q}^{n}
$$

2. Pairwise independent. For $\mathbf{w}_{1}, \mathbf{w}_{2} \neq \mathbf{0}, \mathbf{w}_{1} \neq \mathbf{w}_{2}$, codewords $\mathbf{x}_{1}, \mathbf{x}_{2}$ are independent.

$$
\mathbb{P}\left\{\mathbf{x}_{\mathbf{1}}=\mathrm{x}_{1}, \mathbf{x}_{\mathbf{2}}=\mathrm{x}_{2}\right\}=\frac{1}{q^{2 n}}=\mathbb{P}\left\{\mathbf{x}_{1}=\mathrm{x}_{1}\right\} \mathbb{P}\left\{\mathbf{x}_{2}=\mathrm{x}_{2}\right\}
$$

- Instead of an "inner" random codes, we can use a q-ary linear code.
- This is exactly a nested lattice.
- Each codeword has a uniform marginal distribution over the grid.
- Rate loss due to finite constellation which goes to 0 as $q \rightarrow \infty$.
- Codewords are pairwise

$$
\mathbf{x}=[\gamma \mathbf{G w}] \bmod \mathbb{Z}^{n}
$$ independent so we can apply the union bound.

- General coarse lattice $\Lambda=\mathbf{B} \mathbb{Z}^{n}$.
- First, apply generator matrix for linear code Gw. Then scale down by γ and tile over \mathbb{Z}^{n}.
- Multiply by B and apply $\bmod \Lambda$ to get codebook.
- As q gets large, each codeword's marginal distribution looks uniform over \mathcal{V}.

$$
\mathbf{x}=[\mathbf{B} \gamma \mathbf{G w}] \bmod \Lambda
$$

- Codewords are pairwise independent so we can apply the union bound.

MMSE Scaling

- Erez-Zamir '04: Prior to taking $\bmod \Lambda$, scale by α.

$$
\begin{aligned}
\tilde{\mathbf{y}} & =[\alpha \mathbf{y}] \bmod \Lambda \\
& =[\alpha \mathbf{x}+\alpha \mathbf{z}] \bmod \Lambda \\
& =[\mathbf{x}+\alpha \mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda
\end{aligned}
$$

Effective Noise

- For now, ignore that the effective noise is not independent of the codeword. Effective noise variance $N_{\text {EFFEC }}=\alpha^{2} N+(1-\alpha)^{2} P$.
- Optimal choice of α is the MMSE coefficient $\alpha_{\text {MMSE }}=\frac{P}{N+P}$.

$$
\begin{aligned}
N_{\mathrm{EFFEC}} & =\alpha_{\mathrm{MMSE}}^{2} N+\left(1-\alpha_{\mathrm{MMSE}}\right)^{2} P=\frac{P N}{N+P} \\
C & =\frac{1}{2} \log \left(\frac{P}{N_{\mathrm{EFFEC}}}\right)=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
\end{aligned}
$$

Dithering

- Now the noise is dependent on the codeword.
- Dithering can solve this problem (just as in the discrete case).
- Map message \mathbf{w} to a lattice codeword \mathbf{t}.
- Generate a random dither vector d uniformly over \mathcal{V}.
- Transmitter sends a dithered codeword:

$$
\mathbf{x}=[\mathbf{t}+\mathbf{d}] \bmod \Lambda
$$

- \mathbf{x} is now independent of the codeword \mathbf{t}.

Decoding - Remove Dither First

- Transmitter sends dithered codeword $\mathbf{x}=[\mathbf{t}+\mathrm{d}] \bmod \Lambda$.
- After scaling the channel output \mathbf{y} by α, the decoder subtracts the dither d.

$$
\begin{aligned}
\tilde{\mathbf{y}} & =[\alpha \mathbf{y}-\mathrm{d}] \bmod \Lambda \\
& =[\alpha \mathbf{x}+\alpha \mathbf{z}-\mathbf{d}] \bmod \Lambda \\
& =[\mathbf{x}-\mathrm{d}+\alpha \mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \\
& =[[\mathbf{t}+\mathbf{d}] \bmod \Lambda-\mathbf{d}+\alpha \mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \\
& =[\mathbf{t}+\alpha \mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \quad \text { Distributive Law }
\end{aligned}
$$

- Effective noise is now independent from the codeword \mathbf{t}.
- By the probabilistic method, (at least) one good fixed dither exists. No common randomness necessary.

Summary

- Linear code embedded in the integer lattice:

$$
R=\frac{1}{2} \log \left(\frac{P}{N}\right)-\frac{1}{2} \log \left(\frac{2 \pi e}{12}\right)
$$

- Linear code embedded in the integer lattice, MMSE scaling:

$$
R=\frac{1}{2} \log \left(1+\frac{P}{N}\right)-\frac{1}{2} \log \left(\frac{2 \pi e}{12}\right)
$$

- Linear code embedded in a good shaping lattice, MMSE scaling:

$$
R=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Theorem (Erez-Zamir '04)

Nested lattice codes can achieve the AWGN capacity.

Outline

I. Interference
II. Compute-and-Forward
(a) Basic Ideas
(b) AWGN Case: Introduction to Lattice Codes
(c) AWGN Case: Lattice Codes for Compute-and-Forward
(d) Beyond the AWGN Case: A few thoughts
III. Interference: The Compute-and-Forward Perspective
IV. Single-Hop Networks
V. Multi-hop Networks

Decoding the Sum of Lattice Codewords

Encoders use the same nested lattice codebook.

Transmit lattice codewords:

$$
\begin{aligned}
& \mathbf{x}_{1}=\mathbf{t}_{1} \\
& \mathbf{x}_{2}=\mathbf{t}_{2}
\end{aligned}
$$

Decoder recovers modulo sum.

$$
\begin{aligned}
& {[\mathbf{y}] \bmod \Lambda} \\
& =\left[\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{z}\right] \bmod \Lambda \\
& =\left[\mathbf{t}_{1}+\mathbf{t}_{2}+\mathbf{z}\right] \bmod \Lambda \\
& =\left[\left[\mathbf{t}_{1}+\mathbf{t}_{2}\right] \bmod \Lambda+\mathbf{z}\right] \bmod \Lambda \quad \text { Distributive Law } \\
& =[\mathbf{v}+\mathbf{z}] \bmod \Lambda
\end{aligned}
$$

$$
R=\frac{1}{2} \log \left(\frac{P}{N}\right)
$$

Decoding the Sum of Lattice Codewords - MMSE Scaling

Encoders use the same nested lattice codebook.

Transmit dithered codewords:

$$
\begin{aligned}
& \mathbf{x}_{1}=\left[\mathbf{t}_{1}+\mathbf{d}_{1}\right] \bmod \Lambda \\
& \mathbf{x}_{2}=\left[\mathbf{t}_{2}+\mathbf{d}_{2}\right] \bmod \Lambda
\end{aligned}
$$

Decoder scales by α, removes dithers, recovers modulo sum.

$$
\begin{aligned}
& {\left[\alpha \mathbf{y}-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda} \\
& =\left[\alpha\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{z}\right)-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda \\
& =\left[\mathbf{x}_{1}+\mathbf{x}_{2}-(1-\alpha)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\alpha \mathbf{z}-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda \\
& =\left[\left[\mathbf{t}_{1}+\mathbf{t}_{2}\right] \bmod \Lambda-(1-\alpha)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\alpha \mathbf{z}\right] \bmod \Lambda \\
& =\left[\mathbf{v}-(1-\alpha)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\alpha \mathbf{z}\right] \bmod \Lambda
\end{aligned}
$$

Effective Noise $\quad N_{\text {EFFEC }}=(1-\alpha)^{2} 2 P+\alpha^{2} N$

Decoding the Sum of Lattice Codewords - MMSE Scaling

- Effective noise after scaling is $N_{\text {EFFEC }}=(1-\alpha)^{2} 2 P+\alpha^{2} N$.
- Minimized by setting α to be the MMSE coefficient:

$$
\alpha_{\mathrm{MMSE}}=\frac{2 P}{N+2 P}
$$

- Plugging in, we get

$$
N_{\mathrm{EFFEC}}=\frac{2 N P}{N+2 P}
$$

- Resulting rate is

$$
R=\frac{1}{2} \log \left(\frac{P}{N_{\mathrm{EFFEC}}}\right)=\frac{1}{2} \log \left(\frac{1}{2}+\frac{P}{N}\right)
$$

- Getting the full "one plus" term is an open challenge. Does not seem possible with nested lattices.

From Messages to Lattice Points and Back

- Map messages to lattice points

$$
\left.\begin{array}{rl}
\mathbf{t}_{1} & =\phi\left(\mathbf{w}_{1}\right) \\
\mathbf{t}_{2} & =\phi\left(\mathbf{B} \gamma \mathbf{w}_{2}\right)
\end{array}=\left[\mathbf{B} \gamma \mathbf{w}_{1}\right] \bmod \Lambda \mathbf{w}_{2}\right] \bmod \Lambda .
$$

- Mapping between finite field messages and lattice codewords preserves linearity:

$$
\phi^{-1}\left(\left[\mathbf{t}_{1}+\mathbf{t}_{2}\right] \bmod \Lambda\right)=\mathbf{w}_{1} \oplus \mathbf{w}_{2}
$$

- This means that after decoding a $\bmod \Lambda$ equation of lattice points we can immediately recover the finite field equation of the messages. See Nazer-Gastpar '11 for more details.

Summary: Finite Field Computation over a Gaussian MAC
Map messages to lattice points:

$$
\begin{aligned}
& \mathbf{t}_{1}=\phi\left(\mathbf{w}_{1}\right) \\
& \mathbf{t}_{2}=\phi\left(\mathbf{w}_{2}\right)
\end{aligned}
$$

Transmit dithered codewords:

$$
\begin{aligned}
& \mathbf{x}_{1}=\left[\mathbf{t}_{1}+\mathbf{d}_{1}\right] \bmod \Lambda \\
& \mathbf{x}_{2}=\left[\mathbf{t}_{2}+\mathbf{d}_{2}\right] \bmod \Lambda
\end{aligned}
$$

- If decoder can recover $\left[\mathbf{t}_{1}+\mathbf{t}_{2}\right] \bmod \Lambda$, it also can get the sum of the messages

$$
\mathbf{w}_{1} \oplus \mathbf{w}_{2}=\phi^{-1}\left(\left[\mathbf{t}_{1}+\mathbf{t}_{2}\right] \bmod \Lambda\right)
$$

- Achievable rate $R=\frac{1}{2} \log \left(\frac{1}{2}+\frac{P}{N}\right)$.

Lattice Codes for Computation

All users pick the same nested lattice code: Choose messages over field $\mathbf{w}_{i} \in \mathbb{F}_{p}^{k}:$ Map \mathbf{w}_{i} to lattice point in $\Lambda_{\text {FINE }} \bmod \Lambda_{\text {COARSE }}$:
Transmit lattice points over the channel: Decode the sum:

Decoding is successful whenever $R \leq \frac{1}{2} \log _{2}\left(\frac{1}{2}+\right.$ SNR $)$

Lattice Codes for Compute-and-Forward

Theorem

For the K-user Gaussian MAC with unit gains, a receiver can decode $\sum \mathbf{w}_{i}$ at rate:

$$
R=\frac{1}{2} \log \left(\frac{1}{K}+\frac{P}{N}\right)
$$

Note: Constructive proof requires lattices generated from q-ary codes, where q is generally arbitrarily large.

Lattice Codes for Compute-and-Forward: Direct Sum

- Want sum of messages $\sum_{i=1}^{M} \mathbf{w}_{i}$
- Channel is perfectly matched $\mathbf{y}=\sum_{i=1}^{M} \mathbf{x}_{i}+\mathbf{z}$

$$
M=2
$$

Computation over Fading Channels

Computation over Fading Channels

- Map messages to lattice points $\mathbf{t}_{\ell}=\phi\left(\mathbf{w}_{\ell}\right)$.
- Transmit dithered codewords $\mathbf{x}_{\ell}=\left[\mathbf{t}_{\ell}+\mathbf{d}_{\ell}\right] \bmod \Lambda$
- Receiver removes dithers and decodes an integer combination which can be mapped back to \mathbb{F}_{q} to recover $\bigoplus_{\ell} a_{\ell} \mathbf{w}_{\ell}$.

$$
\begin{aligned}
& {\left[\mathbf{y}-\sum_{\ell=1}^{L} a_{\ell} \mathbf{d}_{\ell}\right] \bmod \Lambda} \\
& =\left[\sum_{\ell=1}^{L} h_{\ell} \mathbf{x}_{\ell}+\mathbf{z}-\sum_{\ell=1}^{L} a_{\ell} \mathbf{d}_{\ell}\right] \bmod \Lambda \\
& =\left[\sum_{\ell=1}^{L} a_{\ell}\left(\mathbf{x}_{\ell}-\mathbf{d}_{\ell}\right)+\sum_{\ell=1}^{L}\left(h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z}\right] \bmod \Lambda
\end{aligned}
$$

$=\left[\left[\sum_{\ell=1}^{L} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda+\sum_{\ell=1}^{L}\left(h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z}\right] \bmod \Lambda \quad$ Distributive Law
Effective Noise

Computation over Fading Channels - Effective Noise

- Effective noise due to mismatch between channel coefficients $\mathbf{h}=\left[h_{1} \cdots h_{L}\right]^{T}$ and equation coefficients $\mathbf{a}=\left[a_{1} \cdots a_{L}\right]^{T}$.

$$
\begin{aligned}
N_{\mathrm{EFFEC}} & =1+\mathrm{SNR}\|\mathbf{h}-\mathbf{a}\|^{2} \\
R & =\frac{1}{2} \log \left(\frac{\mathrm{SNR}}{1+\mathrm{SNR}\|\mathbf{h}-\mathbf{a}\|^{2}}\right)
\end{aligned}
$$

- Can do better with MMSE scaling.

$$
\begin{aligned}
\alpha \mathbf{y} & =\sum_{\ell=1}^{L} a_{\ell} \mathbf{x}_{\ell}+\sum_{\ell=1}^{L}\left(\alpha h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\alpha \mathbf{z} \\
R & =\max _{\alpha} \frac{1}{2} \log \left(\frac{\mathrm{SNR}}{\alpha^{2}+\mathrm{SNR}\|\alpha \mathbf{h}-\mathbf{a}\|^{2}}\right) \\
& =\frac{1}{2} \log \left(\frac{1+\mathrm{SNR}\|\mathbf{h}\|^{2}}{\|\mathbf{a}\|^{2}+\operatorname{SNR}\left(\|\mathbf{h}\|^{2}\|\mathbf{a}\|^{2}-\left(\mathbf{h}^{T} \mathbf{a}\right)^{2}\right)}\right)
\end{aligned}
$$

- Practical codes and constellations: Feng-Silva-Kschischang '10, Hern and Narayanan '11, Ordentlich and Erez '10, Osmane and Belfiore '11

Compute-and-Forward Theorem

Theorem (Nazer-Gastpar 2009, IT Trans 2011)

For the Gaussian MAC with coefficients $\mathbf{h}=\left[h_{1} \cdots h_{L}\right]^{T}$, unknown to the transmitters, it is possible to decode the finite-field sum of the messages with coefficients $\mathbf{a}=\left[a_{1} \cdots a_{L}\right]^{T}$ at rate

$$
\begin{aligned}
R & =\max _{\alpha} \frac{1}{2} \log \left(\frac{\mathrm{SNR}}{\alpha^{2}+\mathrm{SNR}\|\alpha \mathbf{h}-\mathbf{a}\|^{2}}\right) \\
& =\frac{1}{2} \log \left(\frac{1+\mathrm{SNR}\|\mathbf{h}\|^{2}}{\|\mathbf{a}\|^{2}+\mathrm{SNR}\left(\|\mathbf{h}\|^{2}\|\mathbf{a}\|^{2}-\left(\mathbf{h}^{T} \mathbf{a}\right)^{2}\right)}\right)
\end{aligned}
$$

Compute-and-Forward - Multiple Receivers

- No channel state information (CSI) at transmitters.
- Receivers use CSI to select coefficients, decode linear equation

$$
\mathbf{u}_{k}=\bigoplus_{\ell=1}^{K} a_{k \ell} \mathbf{w}_{\ell}
$$

- Reliable decoding possible if

$$
R<\min _{k: a_{k \ell} \neq 0} \frac{1}{2} \log \left(\frac{N+P\left\|\mathbf{h}_{k}\right\|^{2}}{N\left\|\mathbf{a}_{k}\right\|^{2}+P\left(\left\|\mathbf{h}_{k}\right\|^{2}\left\|\mathbf{a}_{k}\right\|^{2}-\left(\mathbf{h}_{k}^{T} \mathbf{a}_{k}\right)^{2}\right)}\right)
$$

Outline

I. Interference
II. Compute-and-Forward
III. Interference: The Compute-and-Forward Perspective
IV. Single-Hop Networks
V. Multi-hop Networks

Interference: The Compute-and-Forward Perspective

Outline

I. Interference
II. Compute-and-Forward
III. Interference: The Compute-and-Forward Perspective
IV. Single-Hop Networks
(a) Fixed Channel Characteristics ("Single Channel")
(b) Varying Channel Characteristics ("Parallel Channels")
V. Multi-hop Networks

Many-to-One Interference Channel

- Only receiver 1 sees interference:

$$
\mathbf{y}_{1}=\mathbf{x}_{1}+\sum_{\ell=2}^{K} \beta_{\ell} \mathbf{x}_{\ell}+\mathbf{z}_{1}
$$

- "Compute-and-Forward" Approach: Encoders use the same nested lattice codebook.
- Decoder \mathcal{D}_{1} decodes linear equations of the messages.
- Additional twist: After decoding an equation, we can (partially) remove it from the received signal.

Many-to-One Interference Channel

- Only receiver 1 sees interference:

$$
\mathbf{y}_{1}=\mathbf{x}_{1}+\sum_{\ell=2}^{K} \beta_{\ell} \mathbf{x}_{\ell}+\mathbf{z}_{1}
$$

Let us denote $\mathbf{b}=\left(1, \beta_{2}, \ldots, \beta_{K}\right)$.

- It first decodes the equation

$$
q_{1}^{(1)} \mathbf{w}_{1}+q_{2}^{(1)} \mathbf{w}_{2}+\ldots+q_{K}^{(1)} \mathbf{w}_{K}
$$

where we collect the integer coefficients into the vector $\mathbf{q}^{(1)}$.

- As we have seen, this works if the rate R is chosen to satisfy

$$
R \leq \max _{\alpha} \log ^{+}\left(\frac{P}{\left\|\alpha \mathbf{b}-\mathbf{q}^{(1)}\right\|^{2} P+\alpha^{2} N}\right)
$$

Many-to-One Interference Channel

- Next, we form

$$
\mathbf{y}_{1}^{(2)}=\mathbf{x}_{1}+\sum_{\ell=2}^{K} \beta_{\ell} \mathbf{x}_{\ell}+\mathbf{z}_{1}-\alpha_{1}^{\prime}\left(\sum_{\ell=1}^{K} \mathbf{q}_{\ell}^{(1)} \mathbf{x}_{\ell}\right)
$$

- From this, we decode

$$
q_{1}^{(2)} \mathbf{w}_{1}+q_{2}^{(2)} \mathbf{w}_{2}+\ldots+q_{K}^{(2)} \mathbf{w}_{K}
$$

where we collect the integer coefficients into the vector $\mathbf{q}^{(2)}$.

- Again, this works if the rate R is chosen to satisfy

$$
R \leq \max _{\alpha_{1}^{\prime}, \alpha_{2}} \log ^{+}\left(\frac{P}{\left\|\alpha_{2}\left(\mathbf{b}-\alpha_{1}^{\prime} \mathbf{q}^{(1)}\right)-\mathbf{q}^{(2)}\right\|^{2} P+\alpha_{2}^{2} N}\right)
$$

which we prefer to trivially rewrite as

$$
R \leq \max _{\alpha_{1}, \alpha_{2}} \log ^{+}\left(\frac{P}{\left\|\alpha_{2} \mathbf{b}-\alpha_{1} \mathbf{q}^{(1)}-\mathbf{q}^{(2)}\right\|^{2} P+\alpha_{2}^{2} N}\right)
$$

Many-to-One Interference Channel

- Next, we form

$$
\mathbf{y}_{1}^{(3)}=\mathbf{x}_{1}+\sum_{\ell=2}^{K} \beta_{\ell} \mathbf{x}_{\ell}+\mathbf{z}_{1}-\alpha_{1}^{\prime}\left(\sum_{\ell=1}^{K} \mathbf{q}_{\ell}^{(1)} \mathbf{x}_{\ell}\right)-\alpha_{2}^{\prime}\left(\sum_{\ell=1}^{K} \mathbf{q}_{\ell}^{(2)} \mathbf{x}_{\ell}\right)
$$

- From this, we decode

$$
q_{1}^{(3)} \mathbf{w}_{1}+q_{2}^{(3)} \mathbf{w}_{2}+\ldots+q_{K}^{(3)} \mathbf{w}_{K}
$$

where we collect the integer coefficients into the vector $\mathbf{q}^{(3)}$.

- Again, this works if the rate R is chosen to satisfy

$$
R \leq \max _{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}} \frac{1}{2} \log ^{+}\left(\frac{P}{\left\|\alpha_{3}\left(\mathbf{b}-\alpha_{2}^{\prime} \mathbf{q}^{(2)}-\alpha_{1}^{\prime} \mathbf{q}^{(1)}\right)-\mathbf{q}^{(3)}\right\|^{2} P+\alpha_{3}^{2} N}\right)
$$

which we prefer to trivially rewrite as
$R \leq \max _{\alpha_{1}, \alpha_{2}, \alpha_{3}} \frac{1}{2} \log ^{+}\left(\frac{P}{\left\|\alpha_{3} \mathbf{b}-\alpha_{2} \mathbf{q}^{(2)}-\alpha_{1} \mathbf{q}^{(1)}-\mathbf{q}^{(3)}\right\|^{2} P+\alpha_{3}^{2} N}\right)$

Many-to-One Interference Channel

- At this point, we have decoded three equations, with coeffcients $\mathbf{q}^{(1)}, \mathbf{q}^{(2)}$, and $\mathbf{q}^{(3)}$, respectively.
- Of course, this is only useful if we can now use these to recover the message \mathbf{w}_{1}.
- Suppose we have

$$
\begin{aligned}
\mathbf{q}^{(1)} & =(1,1,2) \\
\mathbf{q}^{(2)} & =(1,-5,1) \\
\mathbf{q}^{(3)} & =(-1,3,-5)
\end{aligned}
$$

Can we recover \mathbf{w}_{1} ?

- Construct the $3 \times K$ matrix

$$
\mathbf{Q}=\left(\begin{array}{l}
\mathbf{q}^{(1)} \\
\mathbf{q}^{(2)} \\
\mathbf{q}^{(3)}
\end{array}\right)
$$

Let us denote the set of those matrices for which one can recover the first component (i.e., \mathbf{w}_{1}) by \mathcal{Q}_{1}.

Many-to-One Interference Channel

- Construct the $3 \times K$ matrix

$$
\mathbf{Q}=\left(\begin{array}{l}
\mathbf{q}^{(1)} \\
\mathbf{q}^{(2)} \\
\mathbf{q}^{(3)}
\end{array}\right)
$$

Definition

Let \mathcal{Q}_{1} be the set of those matrices for which one can recover the first component (i.e., \mathbf{w}_{1}).

- Exercise: Give an explicit characterization of \mathcal{Q}_{1}. (For the $3 \times K$ case, and then for the general $L \times K$ case.)
- Hint: Consider the matrix \mathbf{Q}^{\prime}, obtained from \mathbf{Q} by removing the first column.

Many-to-One Interference Channel

Theorem (Zhu-Gastpar, ISIT'13)

The following rates are achievable for the many-to-one interference networks

$$
\begin{aligned}
& R_{1} \leq \max _{\substack{L \in \in 1: K] \\
\mathbf{Q} \in \mathcal{Q}_{1}}} \min _{l \in[1: L]} R_{\text {comp }}\left(\mathbf{q}^{(\ell)}, \mathbf{q}^{(\ell-1)}, \ldots, \mathbf{q}^{(1)}\right) \\
& R_{k} \leq \min \left\{\frac{1}{2} \log (1+P), R_{1}\right\} \text { for } k \in[2: K]
\end{aligned}
$$

where

$$
\begin{aligned}
& R_{\text {comp }}\left(\mathbf{q}^{(\ell)}, \mathbf{q}^{(\ell-1)}, \ldots, \mathbf{q}^{(1)}\right) \\
& \quad=\max _{\alpha_{1}, \ldots, \alpha_{\ell}} \frac{1}{2} \log ^{+}\left(\frac{P}{\left\|\alpha_{\ell} \mathbf{b}-\sum_{j=1}^{\ell-1} \alpha_{j} \mathbf{q}^{(j)}-\mathbf{q}^{(\ell)}\right\|^{2} P+\alpha_{\ell}^{2} N}\right)
\end{aligned}
$$

- Now, let $P=10$.
- Then, the best equations turn out to be (in this order!)

$$
\begin{array}{rll}
\mathbf{q}^{(1)}=(1,3,3,3), & \text { leading to } & R_{\text {comp }}=1.707 \\
\mathbf{q}^{(2)}=(3,10,10,10), & \text { leading to } & R_{\text {comp }}=1.782 .
\end{array}
$$

Many-to-One Interference Channel

Many-to-One Interference Channel - Symmetric Very Strong Case

- Equal rates R.
- Good equations:

$$
\begin{aligned}
& \mathbf{q}^{(1)}=(0,1,1, \ldots, 1), \\
& \mathbf{q}^{(2)}=(1,0,0, \ldots, 0) .
\end{aligned}
$$

From the theorem, we find...

- How big does β have to be to achieve $R=\frac{1}{2} \log \left(1+\frac{P}{N}\right)$? (i.e. "very strong" case)
- Baseline scheme: Decode $\mathbf{w}_{2}, \ldots, \mathbf{w}_{K}$ at receiver 1 and remove prior to decoding \mathbf{w}_{1}.

$$
R \leq \frac{1}{2(K-1)} \log \left(1+\frac{\beta^{2}(K-1) P}{N+P}\right)
$$

Hence,

$$
\beta^{2} \geq \frac{\left(\left(1+\frac{P}{N}\right)^{K-1}-1\right)(N+P)}{(K-1) P}
$$

- By contrast, for the "compute-and-forward" scheme:

$$
\beta^{2} \geq \frac{(P+N)^{2}}{P N}
$$

- Originally shown in Sridharan-Jafarian-Vishwanath-Jafar '08 using spherical shaping region. Nested lattice scheme: Nazer-Gastpar '11.
- Further results can be obtained for the many-to-one interference channel.
- Example: Lattices codes combined with the deterministic model can approach the capacity region to within $(3 K+3)(1+\log (K+1))$ bits per user. (Bresler-Parekh-Tse '10).

Symmetric K-User Interference Channel

- Each transmitter wants to send a message to a single receiver.
- Possibility of interference alignment Cadambe-Jafar '08, Motahari et al. '09.
- Approximate capacity known in some special cases: two-user Etkin-Tse-Wang '08, many-to-one and one-to-many Bresler-Parekh-Tse '10, cyclic Zhou-Yu '10.
- Focus on the special case of symmetric cross-gains.

Effective Multiple-Access Channel

- Lattice codes can enable alignment on the signal scale.
- Each receiver sees an effective two-user multiple-access channel,

$$
\mathbf{y}_{k}=\mathbf{x}_{k}+g \sum_{\ell \neq k} \mathbf{x}_{\ell}+\mathbf{z}_{k}
$$

- Idea: Successive cancellation. Decode and subtract interference $\sum_{\ell \neq k} \mathbf{x}_{\ell}$ before going after desired message.
- Only optimal when the interference is very strong, Sridharan et al. '08.
- With the compute-and-forward transform we can approximate the sum capacity in all regimes.

Generalized Degrees-of-Freedom

- Capacity understood in the high SNR regime. Jafar-Vishwanath '10.

$$
\alpha=\frac{\log g^{2} \mathrm{SNR}}{\log \mathrm{SNR}}
$$

$$
d(\alpha)=\lim _{\mathrm{SNR} \rightarrow \infty} \frac{R(\mathrm{SNR})}{\frac{1}{2} \log \mathrm{SNR}}
$$

Alignment via Two Equations

- Each receiver sees an effective two-user multiple-access channel,

$$
\mathbf{y}_{k}=\mathbf{x}_{k}+g \sum_{\ell \neq k} \mathbf{x}_{\ell}+\mathbf{z}_{k}
$$

- Decode two equations:

$$
a_{1} \mathbf{x}_{k}+a_{2} \sum_{\ell \neq k} \mathbf{x}_{\ell} \quad b_{1} \mathbf{x}_{k}+b_{2} \sum_{\ell \neq l} \mathbf{x}_{\ell}
$$

- This allows us to operate close to the symmetric capacity, unlike successive cancellation.

Symmetric K-User Interference Channel

- Using this technique, we can characterize the approximate sum capacity of the symmetric K-user interference channel. See Ordentlich-Erez-Nazer '12 arXiv:1206.0197.
- Typical result:

Strong Interference Regime, $1 \leq \alpha<2$,

$$
\frac{1}{4} \log (\mathrm{INR})-\frac{c+5}{2} \leq C_{\mathrm{sym}} \leq \frac{1}{4} \log (\mathrm{INR})+\frac{1}{2}
$$

for all channel gains except for an outage set of measure $\mu<2^{-c}$ for any $c>0$.

Outline

I. Interference
II. Compute-and-Forward
III. Interference: The Compute-and-Forward Perspective
IV. Single-Hop Networks
(a) Fixed Channel Characteristics ("Single Channel")
(b) Varying Channel Characteristics ("Parallel Channels")
V. Multi-hop Networks

- Fading coefficients h_{1}, h_{2}, h_{3} are iid Gaussian, unknown to the transmitters.
- Fix a certain rate R. Decode either the equation of your choice or one of the messages (which is a special case of an equation...).
- With what probability does the channel not support the rate R that you fixed? ("Outage probability")

Time-Varying Channels, Unknown at Tx

Time-Varying Channels, Unknown at Tx

- One can also study the average rate, averaged over the fading behavior.
- But we here proceed to the case when the channel is known at the Tx.

Time-Varying Channels, Known at Tx

- Decoder 1: $w_{1}+w_{2}-w_{3}$ and $w_{1}-w_{2}+w_{3}$ at $R=\frac{1}{2} \log _{2}\left(\frac{1}{3}+\frac{P}{N}\right)$
- Decoder 2: $-w_{1}+w_{2}+w_{3}$ and $w_{1}+w_{2}-w_{3}$ at $R=\frac{1}{2} \log _{2}\left(\frac{1}{3}+\frac{P}{N}\right)$
- Decoder 3: $w_{1}-w_{2}+w_{3}$ and $-w_{1}+w_{2}+w_{3}$ at $R=\frac{1}{2} \log _{2}\left(\frac{1}{3}+\frac{P}{N}\right)$

Time-Varying Channels, Known at Tx

- Hence, each user gets a rate of

$$
R=\frac{1}{2} \cdot \frac{1}{2} \log _{2}\left(\frac{1}{3}+\frac{P}{N}\right)
$$

- Actually, we can do a little better: Simply add up the analog channel outputs from even and odd channel. This leads to a new interference channel:

$$
\begin{aligned}
& Y_{1}=2 X_{1}+Z_{1}+Z_{1}^{\prime} \\
& Y_{2}=2 X_{2}+Z_{2}+Z_{2}^{\prime} \\
& Y_{3}=2 X_{3}+Z_{3}+Z_{3}^{\prime}
\end{aligned}
$$

The per-user rate is now

$$
R=\frac{1}{2} \cdot \frac{1}{2} \log _{2}\left(1+\frac{2 P}{N}\right),
$$

which can be shown to be exactly the (sum-rate) capacity of the considered network.

Time-Varying Channels, Known at T_{x}

Time-Varying Channels, Known at Tx

For example, when the channel matrix changes over time...

Key Idea

1. At time t with channel \mathbf{H}, user k transmits signal X_{k}.

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

2. When complementary matrix \mathbf{H}_{C} occurs, retransmit signals X_{k}.

$$
\mathbf{H}_{C}=\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right] \pm \delta
$$

3. Otherwise, transmit new signals and wait for their \mathbf{H}_{C}.

Pairing Up Channels

- We need to match up almost every matrix with its complement.
- Want a finite set of possible matrices \mathcal{H} for analysis:

1. Quantize each channel coefficient to precision δ (closest point in $\delta(\mathbb{Z}+j \mathbb{Z})$).
2. Set threshold $h_{\text {MAX }}$. Throw out any matrix with $\left|h_{k \ell}\right|>h_{\text {MAX }}$.

- Choose $\delta, h_{\text {MAX }}$ to get desired rate gap.
- Since phase is i.i.d. uniform, $P(\mathbf{H})=P\left(\mathbf{H}_{C}\right)$.

Convergence in Type

Sequence of channel matrices \mathbf{H}^{n} is ϵ-typical if:

$$
\left|\frac{1}{n} N\left(\mathrm{H} \mid \mathbf{H}^{n}\right)-P(\mathrm{H})\right| \leq \epsilon \quad \forall \mathrm{H} \in \mathcal{H}
$$

Lemma (Csiszar-Körner 2.12)

For any i.i.d. sequence, \mathbf{H}^{n}, the probability of the set of all ϵ-typical sequences, A_{ϵ}^{n}, is lower bounded by:

$$
P\left(A_{\epsilon}^{n}\right) \geq 1-\frac{|\mathcal{H}|}{4 n \epsilon^{2}}
$$

Convergence in Type

$\begin{array}{lllllllllll}\mathbf{H}_{1} & \mathbf{H}_{2} & \mathbf{H}_{3} & \mathbf{H}_{4} & \mathbf{H}_{4 C} & \mathbf{H}_{3 C} & \mathbf{H}_{2 C} & \mathbf{H}_{1 C}\end{array}$
Channel Thresholding

Ergodic Interference Alignment

1. At time t with channel \mathbf{H}, user k transmits signal X_{k}.

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

2. When complementary matrix \mathbf{H}_{C} occurs, retransmit signals X_{k}.

$$
\mathbf{H}_{C}=\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right] \pm \delta
$$

3. Otherwise, transmit new signals and wait for their \mathbf{H}_{C}.

In this special case, there is an even simpler solution...

$$
\begin{aligned}
& {\left[\begin{array}{c}
Y_{1}(t) \\
Y_{2}(t) \\
\vdots \\
Y_{K}(t)
\end{array}\right]} \\
& {\left[\begin{array}{c}
Y_{1}\left(t_{C}\right) \\
Y_{2}\left(t_{C}\right) \\
\vdots \\
Y_{K}\left(t_{C}\right)
\end{array}\right]} \\
& \left.\left(\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right] \pm \delta\right) \mathbf{X}+\begin{array}{ccc}
h_{11} & h_{12} \\
h_{21} & h_{22} \\
\vdots & \vdots \\
h_{K 1} & h_{K 2} \\
\end{array}\right]
\end{aligned}
$$

\square

Interference Channel Ergodic Capacity

Theorem (Nazer-Gastpar-Jafar-Vishwanath IEEE Trans Info Theory, 2012 (ISIT '09))
Each user can achieve at least half its interference-free capacity at any signal-to-noise ratio:

$$
R=\frac{1}{2} E\left[\log \left(1+2\left|h_{m m}\right|^{2} \mathrm{SNR}_{m}\right)\right]>\frac{1}{2} R_{\text {FREE }}
$$

- "Everybody gets half the cake!"
- For uniform phase fading and a large number of users, scheme achieves the ergodic capacity.
- Can also show this approach achieves the ergodic capacity region for finite field channel models.

Outline

I. Interference
II. Compute-and-Forward
III. Interference: The Compute-and-Forward Perspective
IV. Single-Hop Networks
V. Multi-hop Networks
(a) Fixed Channel Characteristics
(b) Varying Channel Characteristics

- Two users want to send messages across the network with the help of two relays.
- Strategy 1: Each relay decodes one message.
- Strategy 2: Relays send their observed signal to the destination without decoding.

Multi-Hop Networks

- Interference can be useful!
- Not captured by bit pipe approach.

Multi-Hop Networks

- What if each relay could decode a linear equation?
- Compute-and-Forward: One relay decodes the sum of codewords. Other relay decodes the difference.

Multi-Hop Networks

- Compute-and-Forward is nearly optimal!

Multi-Hop Networks

- Equal rates R. H is a Hadamard matrix, $\mathbf{H H}^{T}=K \mathbf{I}$

Upper Bound

$$
\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Compress-and-Forward

$$
\frac{1}{2} \log \left(1+\frac{P}{N} \frac{P}{N+K P}\right)
$$

Compute-and-Forward

$$
\frac{1}{2} \log \left(\frac{1}{K}+\frac{P}{N}\right)
$$

Decode-and-Forward

$$
\frac{1}{2 K} \log \left(1+\frac{K P}{N}\right)
$$

Multi-Hop Networks

- Relay 1 decodes $\mathbf{w} 1+\mathbf{w} 2-\mathrm{w} 3$, etc.
- In this example, because the two matrices are inverses of each other, things work out perfectly. $R=\frac{1}{2} \log _{2}\left(\frac{1}{3}+\frac{P}{N}\right)$.
- Remark: We could also simply use amplify-and-forward, at the expense of noise amplification. Called Interference Neutralization (Jeon et al, 2011). $R=\frac{1}{2} \log _{2}\left(1+\frac{2 P}{3 N}\right)$.

Outline

I. Interference
II. Compute-and-Forward
III. Interference: The Compute-and-Forward Perspective
IV. Single-Hop Networks
V. Multi-hop Networks
(a) Fixed Channel Characteristics
(b) Varying Channel Characteristics

Rayleigh fading, unknown at Tx

- Rayleigh fading
- No channel state information (CSI) at transmitters.
- Compute-and-Forward strategy: Given CSI, each relay independently selects the coefficients for an equation to decode, and forwards this equation.
- Fix transmission rates, what is the probability that the channel cannot support them? ("Outage probability")
- Here, we flip the perspective: fix the outage probability (0.25 in our example), maximize the rate.

Rayleigh fading, unknown at Tx

Rayleigh fading, unknown at Tx

- Rayleigh fading
- No channel state information (CSI) at transmitters.
- Goal: K linearly independent equations are decoded.

Some "negative" results for the high SNR behavior:

- It can be shown that this strategy achieves no more than two (computation) degrees of freedom, irrespective of the number of transmitter/receiver pairs (Niesen, Whiting, 2011).
- This is by contrast to one (message) degree of freedom for Han-Kobayashi.
- It is also by contrast to K degrees of freedom when instead of Rayleigh, the channel matrices are rational.

Time-Varying, known at Tx

- Now, suppose that the channel is known at the Tx ahead of time.
- Then, we can do interference alignment.

Time-Varying, known at Tx

Example:

- We can pair up each matrix \mathbf{H} with its inverse \mathbf{G}. (That is, find appropriate time slots.)
- Then, we can apply the interference neutralization trick.
- Either via compute-and-forward
- Or via amplify-and-forward, if we are not worried about the noise accumulation.

Time-Varying, known at Tx

For the amplify-and-forward strategy under uniform phase fading, we can show the following:

Theorem (Wang-Jeon-Gastpar, ISIT'12)

$$
\begin{aligned}
R_{\mathrm{MIMO}} & =\log \left(1+4 P+2 P^{2}\right)+\log \left(1+\sqrt{1-(C(P))^{2}}\right)-1 \\
R_{\mathrm{IN}} & =2 \log \left(1+\frac{2 P^{2}}{1+4 P}\right)+2 \log \left(1+\sqrt{1-(C(P))^{2}}\right)-2
\end{aligned}
$$

where $C(P)=2 P^{2} /\left(1+4 P+2 P^{2}\right)$. Furthermore, for any $P \geq 0$,

$$
C_{\mathrm{sum}}-R_{\mathrm{IN}} \leq 4
$$

Note: For Rayleigh fading, we can show that the gap is around 4.7 bits.

Concluding Remarks

- Compute-and-Forward is one quite natural approach to managing interference:
- The mantra is: "Whenever signals collide/interfere, decode a function of the messages, rather than the messages themselves."
- If the function to be decoded is "similar" to the channel, there is hope that the resulting rate will be interesting.
- There exist networks where it attains optimal performance (and no other known strategy does).
- There exist practically relevant networks where it attains the best known performance (e.g., distributed antenna systems).
- ...but: so far, the story is pretty much limited to linearly colliding signals.
- On the positive side: for the linear case, the practical implementation of Compute-and-Forward is possible essentially with off-the-shelf components!

Main References To My Group's Work

- B. Nazer and M. Gastpar. Reliable Physical-Layer Network Coding. Proceedings of the IEEE, March 2011.
- B. Nazer and M. Gastpar. Compute-and-Forward: Harnessing Interference Through Structured Codes. IEEE Transactions on Information Theory, October 2011. (2013 Communications Society \& Information Theory Society Joint Paper Award)
- B. A. Nazer and M. Gastpar. Computing over multiple-access channels with connections to wireless network coding. In Proceedings of the 2006 IEEE International Symposium on Information Theory (ISIT), Seattle, WA, July 2006.

