Interference Management for Tomorrow's Wireless Networks - Newcom# Summer School Sophia-Antipolis, 31st May 2013

Interference mitigation in HetNet systems

From theory to practice

Oriol Font-Bach

(Researcher)

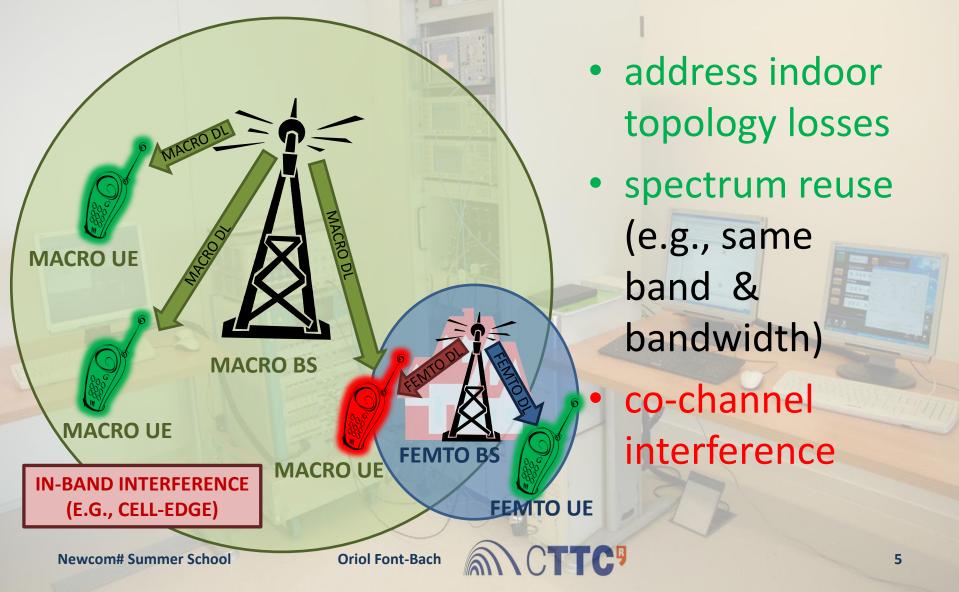
Centre Tecnològic de Telecomunicacions de Catalunya

Outline

- 1. Introduction
- 2. Motivation
- 3. Digital design tendencies
- 4. Choosing a digital design flow for processing demanding systems
- 5. Development flow and prototyping platform
- 6. Interference management in HetNets
- 7. RTL design
- 8. Validation and results using the GEDOMIS® testbed

1. Introduction

Newcom# Summer School


Opportunistic spectrum reuse

- Evolution of wireless communication systems needs to address many issues
 - Congested RF spectrum → <u>opportunistic reuse</u>: i.e., objective of CR
 - Problem: in-band interference → secondary communication degrades QoS perceived by primary users
 - Interference management solutions are required!
 - Combined with high performance and demanding operating conditions

 advanced PHY-layer schemes (e.g., MIMO-OFDM(A), closed-loop, wide bandwidth).

Spectrum-reuse example: femtocells

Interference management

- Inter-Cell Interference Coordination (ICIC) schemes for HetNet (e.g., Macro/Femto)
 - Interference avoidance
 - E.g., spectrum sensing → allocate unused bands
 - Interference mitigation
 - E.g., interference-detection & adaptation of opportunistic transmission
 - required to enable frequency reuse → same band is used by different users among adjacent (heterogeneous) cells

2. Motivation

Newcom# Summer School

What motivates this tutorial?

• Two main factors:

1) Practical need for real-time implementations

- a. PHY-layer of a BWA system (e.g., LTE) featuring an interference management scheme
- b. Utilization of a heterogeneous prototyping platform (e.g., FPGA-based, using COTS RF + channel emulation)

2) Need to employ innovating digital design techniques to fulfill 1)

- a. Efficient utilization of baseband processor capacity
- b. Address implementation challenges posed by real-time DSP, wide bandwidth & complex baseband algorithmic

Why real-time PHY prototyping? (I)

I can rapidly model my algorithm/system with floating point code in a computer-based simulation and simulate as many scenarios as I wish... If I'm struggling with extremely long simulation times, I can always make system-wide simplifications

Why do I have to bother about implementation?

No worries for hardware specifications, implementation cost, undesired operating or signal conditions ...

Newcom# Summer School

Oriol Font-Bach

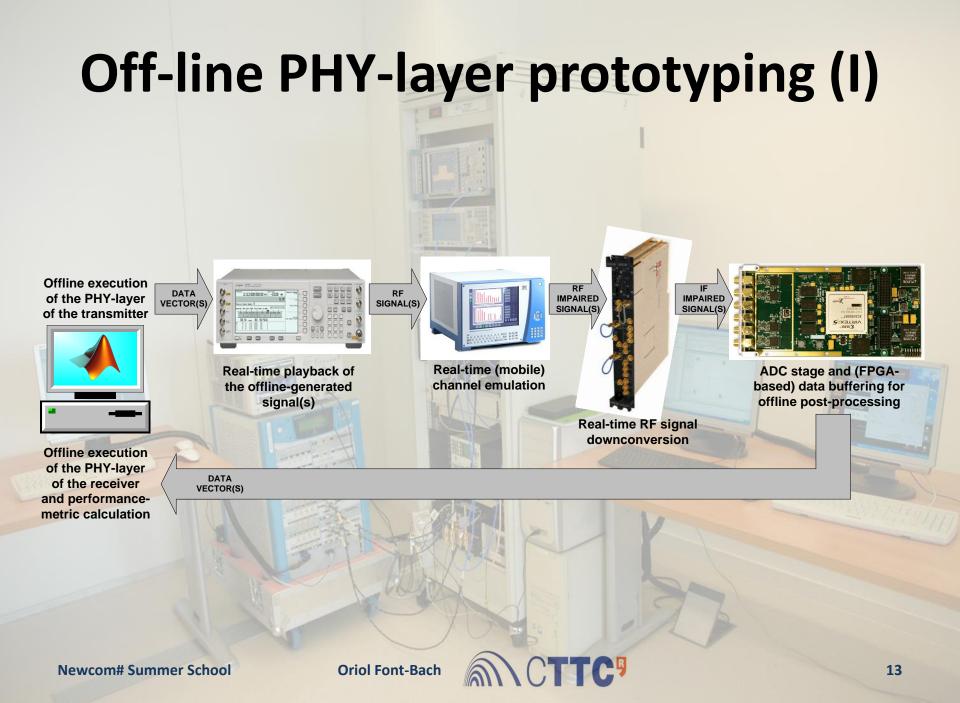
9

Why real-time PHY prototyping? (II)

- **Objective** = realistic validation of a (highperformance) Macro/Femto interferencemanagement scheme
- What affects the performance of the PHY-layer scheme under analysis?
 - Low-level HW-specifications, limitations & impairments introduced to the signal
 - Realistic signal propagation conditions (including mobile channels, noise and interference)
 - Capacity of the target processing solution

Validation options

- Each has different objectives and capacities:
 - 1. High-level modelling & computer simulation
 - 2. Off-line prototyping
 - 3. <u>Real-time prototyping</u>



HLPL-based PHY-layer modelling

- Natural starting point of DSP research (e.g., MATLAB)
 - Pros: flexible, low cost (time and money), rapid evaluation of innovative techniques
 - <u>Cons:</u> limited capacity to...
 - deal with computational intensive data processing (e.g., wide bandwidth, MIMO)
 - model or account for realistic signal conditions and hardwareintroduced impairments (e.g., mobile channel)
 - reproduce dynamic behavior at run-time (e.g., closed-loop)

Common assumptions and simplifications: idealized channel conditions, perfect sycnhronization, perfect CSI at Tx, ignores implementation cost, unlimited numerical precision... → IMPACTS PERFORMANCE ASSESSMENT

Off-line PHY-layer prototyping (II)

- Combination of HLPL-based PHY-layer with COTS RF + over-the-air/channel emulation
 - <u>Pros:</u> keeps flexibility and low-development cost of software-based PHY modelling, considers realistic signal conditions (including HW-introduced impairments)
 - <u>Cons</u>: equipment cost (& stability of setup), still features limited capacity to...
 - deal with computational intensive data processing
 - reproduce dynamic behavior at run-time

An improved step towards realistic validation, but it is still common for modelled PHY to feature assumptions and simplifications: perfect CSI at Tx, ignore implementation cost... → IMPACTS PERFORMANCE ASSESSMENT

Real-time PHY-layer prototyping

- COTS RF + over-the-air/channel emulation + real-time DSP implementation (e.g., FPGA)
 - <u>Pros:</u> enables bit-intensive (adaptive) DSP, allows realistic validation by considering: close to real-life operating and signal conditions & HW limitations and implementation cost.
 - <u>Cons</u>: development bounded by...
 - long cycle → design, implementation and verification requires a lot of effort (time!)
 - elevated hardware cost
 - HW-specifications (finite resources & dynamic range)

Limits range of scenarios and PHY-layer schemes that can be considered (e.g., number of users, number of antennas...) → proof-of-concept

Why is it required innovative digital design? (I)

Ok, let's consider the real-time implementation of the proposed PHYlayer schemes...

What does it make their development so demanding?

Why is it required innovative digital design? (II)

- Design complexity increases because of:
 - Bandwidth
 - 4G BWA → up to 100 MHz!
 - Number of antennas
 - Real-time operation
 - Requiring parallelism + large storage capacity

 complicated controlplane
 - Run-time adaptivity
 - Feedback generation, transmission, reception and reconfiguration of the PHY-layer
 - Realistic signal impairments
 - DFE, channel estimation...
 - Depending on the application, due to the required intelligentutilization of the provided FPGA-resources

Why is it required innovative digital design? (III)

Conclusion: the design complexity motivates the inclusion of critical novelties, which are not directly related to the proposed DSP algorithmic, but to its actual implementation in a dedicated processing architecture

... plus modern FPGAs are offering unprecedented processing capacity

But nowadays there are plenty of vendor-provided tools to convert my HLPLbased model to a fully working FPGA implementation, right?

Newcom# Summer School

3. Digital design tendencies

Newcom# Summer School

General overview

- Focusing on FPGA-based developments
- Main HDL design approaches
 - Automated HDL generation
 - HLPL-to-RTL
 - Schematic-entry to HDL
 - Custom HDL with 3rd-party IPs
 - Full-custom HDL (i.e., gate-level design)

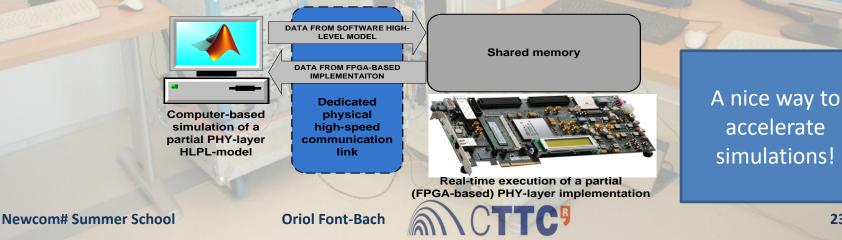
HLPL-to-RTL (I)

Growing (EDA industry) interest in higher level design methodologies

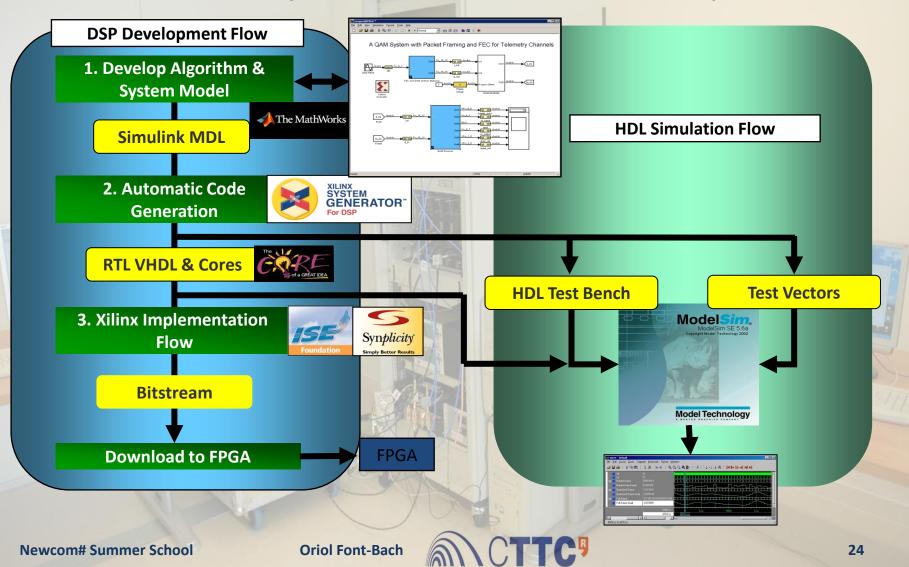
System level tools/design methodologies are being explored.

- Motivation #1 → getting to a broader audience
 - No requirement for HDL or digital design skills
- Motivation #2 -> IP reuse
 - Marketing & commercial tool for FPGA manufacturers
- Motivation #3
 need for High-Level Design
 - Higher level of abstraction
 ever-increasing design complexity
 - Reduce design efforts
 - Fast development time
 - Technology independence
 no need to consider low-level architecture of target FPGA device (?)
 - Ease of HW/SW partitioning

HLPL-to-RTL (II)


- Multitude of solutions today
 - <u>C-based:</u> SystemC, Simulink Coder, Synphony C
 Compiler, Catapult HLS, Xilinx Vivado...
 - Matlab-based: Mathworks HDL Coder, AccelChip
 DSP, System Generator for DSP...
 - Java-based: Forge, JHDL
 - Python-to-HDL: MyHDL

Schematic-entry to HDL (I)


Case study - Matlab-Simulink + System Generator for DSP

- Model-based design entry
 - Drag n' drop processing blocks + interconnect them
- Provides SW design utilities & precompiled mathematical functions
 - Many signal processing or specialized toolboxes included
- Includes optimized RTL IP libraries -> System Generator for DSP
 - Xilinx offers a limited subset of the Core Generator IP cores
- Computer based simulation + automatic HDL generation
- Allows combination with other HDL coding approaches:
 - <u>HLPL-to-RTL</u>: user can include custom Matlab (M-code blocks)/C code
 - <u>Custom HDL</u>: user can instantiate it using the "black box primitive"
- Offers a hardware-software co-simulation environment -> e.g., HIL

Schematic-entry to HDL (II)

Matlab-Simulink + System Generator for DSP development flow

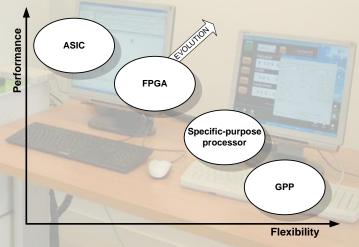
Automated HDL (I)

That is a great step forward!

However... extracting all the concurrency from a sequential HLPL description is not an easy problem

Newcom# Summer School

Automated HDL(II)


The downsides...

- HLS are inevitably less efficient (than custom RTL design)
 - Problematic for complex designs requiring an elevated amount of FPGA resources
 cannot meet the required timing, area, or performance
 - Also... limited access to low-level implementation options of EDA tools
 - <u>E.g.</u>, in C-to-RTL efficiency might be increased by introducing specialized FPGA-constructs (to force the utilization of specific embedded resources) → increases design time & complexity
- Coding limitations
 → HLPLs may...
 - Permit a certain subset of known commands
 - Require a specific source-code syntax
 - Impose/require certain code optimizations/restrictions
 - Constraint the maximum achievable performance
- Requirements for parallelism
 high performance computing
 - Makes tougher to code with HLPLs

Special focus on the Vivado IDE (I)

- Xilinx promotes HW/SW co-design
 - Vivado is centred around high-level design
 - IP re-use + HLS
 - Zynq devices
 - Co-processing architecture
 - FPGA + dual-core ARM processor
 - Flexibility + performance
 - Wider range of end applications & custormers

Special focus on the Vivado IDE (II)

- <u>Pros:</u> Flexibility complements the traditional parallelism offered by programmable logic
- <u>Cons</u>: HW/SW co-design and use of HLS is not trivial, although specialized SW tools and IP cores are being made avialable
 - E.g: Vivado HLS → specialized C-code including "FPGA-pragmas" and requiring several refinement iterations → development cycle time and design complexity comparable to that of custom HDL code generation

Metric	RTL expert	AutoPilot expert	AutoPilot expert	Implementation results for a
Dev. time (man-weeks)	4.5	3	5	8x8 MIMO sphere decoder
LUTs	5,082	6,344	3,862	(Note that Xilinx bought the AutoPilot HLS tool from UCLA and incorporated it into Vivado)
Registers	5,699	5,692	4,931	
DSP48 s	30	46	30	
18 K BRAMs	19	19	19	

J. Noguera, S. Neuendorffer, S. V. Haastregt, J. Barba, K. Vissers, and C. Dick, "Implementation of Sphere Decoder for MIMO-OFDM on FPGAs Using High-level Synthesis Tools," *Analog Integrated Circuits and Signal Processing*, vol. 69, no. 3, pp. 119–129, Sep. 2011.

Newcom# Summer School

Custom HDL coding (I)

- Custom HDL is hard to deliver and very costly in time but it will always be necessary...
 - Lack of pre-verified IP cores
 - Dense designs
 - Whenever an optimum HDL implementation is the goal

... even if is only utilized on small portions of the design

Custom HDL coding (II)

- Provides the means to control every important aspect of the design
 - Low-level definition of a dedicated RTL architecture → optimized for performance, minimized resource utilization...
 - Benefits from utilization of 3rd-party IP cores
 - Optimized for target FPGA device: e.g., Xilinx Core Generator (FFT, FIR...)
- Efficient design requires in-depth knowledge of target FPGA architecture & associated EDA tools

Custom HDL coding (III)

Example - Three steps to boost performance

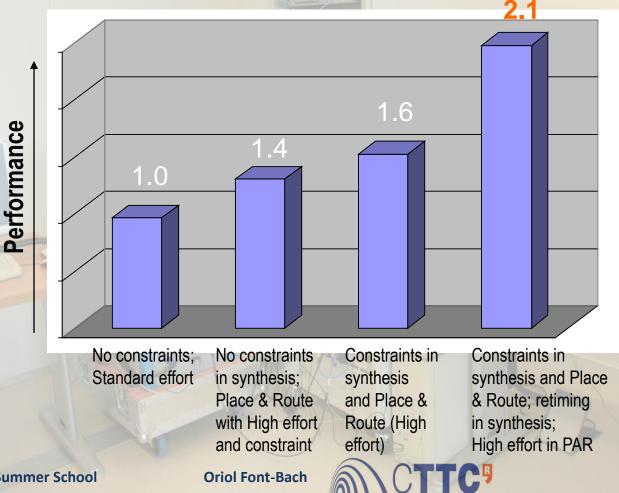
1. Utilize embedded (dedicated) resources

- DSP slice, block RAM, ISERDES, OSERDES, EMAC, and MGT
- Dedicated hardware block timing is correct by construction
- Not dependent on programmable routing
- Offers as much as 3x the performance of soft implementations

2. Write code for performance

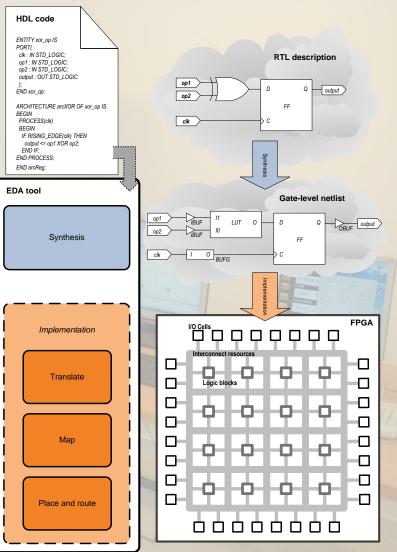
- Use pipeline stages—more bandwidth
- Use synchronous reset—better system control
- Use Finite State Machine (FSM) optimizations
- Use inferable resources (e.g. MUX, Shift Register LUT (SRL), BRAMs, Cascade DSP)
- Think about the levels of logic required for the logic you are building
- Be aware of the inferred circuits & the expected combinatorial complexity

3. Drive your synthesis and Place & Route tools


- Try different synthesis optimization techniques
- Add critical timing constraints in synthesis
- Preserve hierarchy
- Apply full and correct constraints
- Use High effort

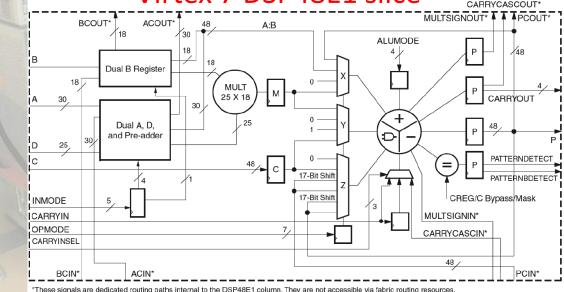
Newcom# Summer School

Example of the impact of constraints in EDA tools


Example Reed-Solomon design

Newcom# Summer School

Full-custom HDL (I)


- HDL design = top-down methodology
- Code is translated (in various phases) to a lowlevel description of the circuit
 - Very abstract design description yields poor results
 - Detailed description drives the decisions of the translation process

33

Full-custom HDL (II)

- Gate-level design → force utilization of the instantiated primitives (avoid automatic inference)
- Fully-optimized design → ASIC prototyping
 - Area, performance, consumption...
- Requires full knowledge of low-level architecture of the target
 FPGA Virtex 7 DSP48E1 slice
 CARRYCASCOUT*

4. Choosing a digital design flow for processing demanding systems

Newcom# Summer School

Different system-design cases require different design solutions!

- 1. Investigate thoroughly your system design requirements
- 2. <u>Select the most appropriate</u> <u>development flow</u>
 - a) HDL coding approach
 - b) IDE solution/target technology
 - c) Validation strategy

Example: combination of custom and automated HDL coding approaches

How to select an appropriate design methodology?

- Parameters to consider:
 - Target use
 experimental prototype, product...
 - Scope of application defines fundamental specifications
 BWA, power-line communications, space, medical...
 - Cost! → budget for HW, SW, PMs...
 - Design objectives

 performance, low-power, area...
 trade-off?
 - Operation mode defines design constraints & HW complexity
 real-time, off-line?
 - Technical skills of the team + available HW/SW → mature processing technology, pre-verified IPs...

Use case: designing a processing demanding PHY-layer scheme (I)

Analysis of the presented use case

Target use	Experimental prototype using COTS HW
Application: general scope	Macro/femto interfernce-mitigation scheme for BWA systems
Application: low-level scope	High performance adaptive DSP, baseline standard compliance (3GPP LTE Rel. 9)
Cost	HW/SW budget defined, PM defined
Design objectives	Performance, Portability, Extendibility
Operation mode	Real-time
Existing programming & design expertise	VHDL, Matlab, C, Java
Existing SW tools and HW equipment	Prototyping boards, pre-verified IPs, licenses for SW design packages
Capacity for real-life system validation	Signal generation/acquisition HW, system- wide testing & debugging using various equipment, board-level code integration

Use case: designing a processing demanding PHY-layer scheme (II)

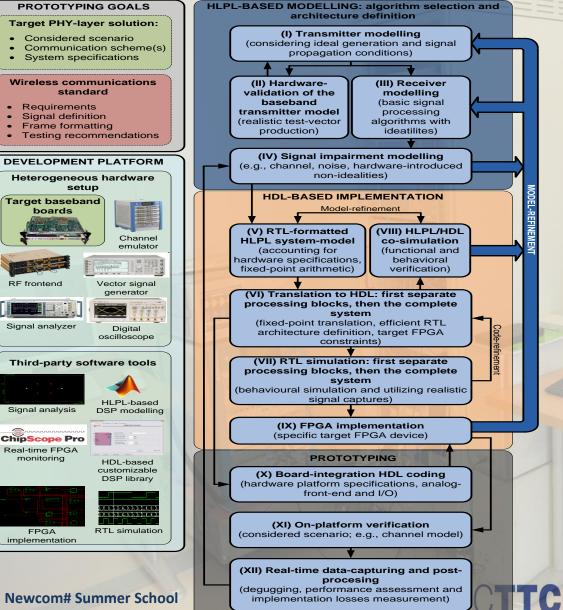
• Given the previous analysis and the described motivation it has been selected a...

CUSTOM HDL CODING APPROACH RELYING ON 3rd-party IP CORES

(more details on the full development flow and target prototyping platform follow)

Newcom# Summer School

Oriol Font-Bach


5. Development flow and prototyping platform

Newcom# Summer School

Oriol Font-Bach

Proposed incremental development flow

•

.

Idealized HLPL model

algorithm selection

1.

- implementation cost
- 2. Off-line Tx prototyping
- hardware-validation of Tx
- experimental captures •
- **HLPL-model refinement** 3.
- realistic signal
- **RTL-awareness**
- 4. RTL design (custom HDL)
 - co-simulation (IP config.)
- test DFE in HW

 back to 3
- 5. **FPGA** implementation
 - platform integration
- 6. **On-lab** validation
 - debugging -> chipscope + equipment
- real-time data captures
- Performance assessment
 - post-processing \rightarrow metrics

Development challenges

- Heterogeneous prototyping platform
 - Characterization

 early identification of performance bottlenecks

 - Hardware-originated signal impairments
- Channel and mobility effects
- FPGA-design partitioning
- Design and implementation software tools
 recall previous example!

The GEDOMIS® testbed (I)

Newcom# Summer School

Oriol Font-Bach

The GEDOMIS® testbed (II)

- Signal conversion and baseband processing
 - Lyrtech ADP

VHS-ADC	VHS-DAC	SMQUAD-4	DRC
ADCs:	DACs:	FPGA devices:	FPGA device:
 AD6645 (8x) sampling rate 105 MSPS, 14-bit resolution 	 DAC5687 (4x) sampling rate 480 MSPS (14-bit resolution) 	 2 Xilinx Virtex-4 XC4VLX160 DSP microprocessors: 	 Xilinx Virtex-4 XC4VSX35 Onboard flash
Control & pre-processing:	Control & pre-processing:	• 4 TMS320C6416 DSPs	PROM
 Virtex-4 XC4VLX160 FPGA 128-MB SDRAM Off-board I/O: RapidCHANNEL TX & RX, 1 GBps, full-duplex 	 Virtex-4 XC4VLX160 FPGA 128-MB SDRAM Off-board I/O: RapidCHANNEL TX & RX, 1 GBps, full-duplex 	 SDRAM memories: 128MB per DSP/FPGA Off-board I/O: RapidCHANNEL TX & RX, 1 GBps, full-duplex On-board inter-FPGA bus: LYRIO 1-GBps (1 RX, 1 TX) 	Off-board I/O: RapidCHANNEL TX & RX, 1 GBps, full- duplex On-board inter-FPGA bus: LYRIO 1-GBps (1 RX , 1 TX)
Neuroem# Cummer School	Orial Fant Back	OTTOR	

The GEDOMIS® testbed (III)

- <u>RF section</u>
 - − Upconversion → Agilent E4438C ESG VSG
 - Also off-line prototyping (arbitrary waveform generator)
 - Downconversion → MCS RF 3000T (4 channels)

	Equipment	Main specifications	
		250 kHz to 6 GHz	
		80 MHz bandwidth	
Agilent ESG4438C VSG	Agilent ESG4438C VSG	+17 dBm output power	
		<-134 dBc phase noise at 20 kHz offset	
		± 1 ppm internal reference accuracy	
	MCS Echoteck Series RF 3000T Tuners	20 MHz to 3 GHz	
		65 MHz bandwidth	
		Manual gain control 85 dB	
		<-115 dBc phase noise at 10 kHz offset	
		± 0.5 ppm internal reference accuracy	

The GEDOMIS® testbed (IV)

- Provision of realistic signal conditions
 - EB Propsim C8 Channel Emulator
 - Real-time standard/custom channels, up to 4x4 MIMO
 - AI (extremely flat) AWGN generators

Oriol Font-Bach

• E.g., BER vs SNR testing

	Equipment	Main specifications	
		350 MHz to 6 GHz	
	EB Propsim C8 Channel Emulator	70 MHz bandwidth	
		Up to 48 fading paths per channel	
		Propagation delay up to 6.4 ms	
		Mobile speed up to $40,000 \text{ km/h}$	
	AI NS-3 RF Noise Source	5 MHz to 2.15 GHz	
		30 dB range with 0.1 dB steps	
		-90 dBm/Hz maximum output power	
		$\pm 2.0~\mathrm{dB}$ flatness over full operating range	

The GEDOMIS® testbed (V)

Other specialized equipment

Clock generation
 → Holzworth microwave sources

		Equipment	Main specifications
<image/>		HSC1001A RF synthesizer	8 MHz to 1 GHz 0.001 Hz resolution -110 to +15 dBm output power range <-131 dBc phase noise at 10 kHz offset Internal reference 100 MHz ±1 ppb internal reference accuracy
		HSM1001A RF synthesizer	250 kHz to 1 GHz 0.001 Hz resolution -70 to +10 dBm output power range <-133 dBc phase noise at 10 kHz offset Internal reference 100 Mhz ±1 ppb internal reference accuracy External reference input 10/100 MHz

	Equipment	Main specifications
	R& S FSQ Signal Analyzer	20 Hz to 26.5 GHz 120 MHz bandwidth -173 dBm displayed average noise level 235 MSa I/Q memory <-133 dBc phase noise at 10 kHz offset
Newcorr	Agilent DSO80804B Infiniium Oscilloscope	4 analog channels 10 GHz bandwidth 40 GSaPS Noise floor 294 μ V (5 mV/div)

Signal impairments resulting from the utilization of GEDOMIS®

- High-end RF equpiment:
 - Negligible I/Q phase/gain imbalances
 - CFO can be accuratelly generated
- <u>High precision clock synthesis equipment:</u>
 - It can be safely ignored: effects of inaccuracy between sampling clock at Tx/Rx in respect to exact sampling frequency, LO drifts/instability
 - LO coupling at RF transmitter still needs to be accounted → it is converted to an in-band sinusoid
- Extremely flat AWGN generator:
 - Precise control of noise level
- The chassis of the ADP introduces a DC signal:
 - Out-of-band signal which needs to be filtered in the digital domain
- Channel emulator:
 - Allows the reproduction of standard and custom channels (e.g., mobility conditions, interference)

6. Interference management in HetNets

Oriol Font-Bach

Scenario definition

Opportunistic femto communication

Macro UL Signal

Macro DL Signal

- Same frequency-band
- Same DL signal BW

Dedicated feedback link

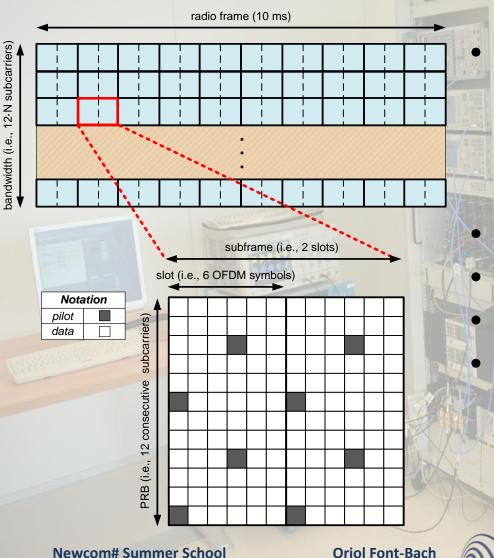
Macro BS Newcom# Summer School

Oriol Font-Bach

Macro UE

Femto DL Signal

Femto BS


Femto UE

System specifications

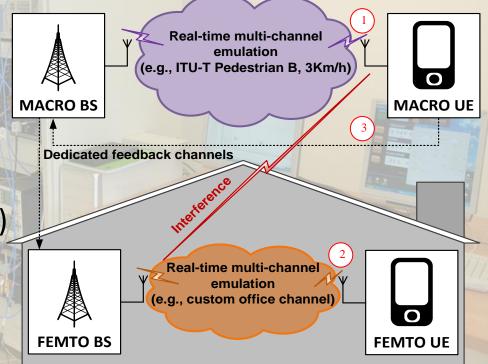
Parameter	Value
Wireless telecommunication sta	andard 3GPP LTE (Rel. 9)
Antenna scheme: SISO	1x1
Channel bandwidth (MHz	20
Cyclic prefix (samples)	$512 \ (1/4 \text{ of the symbol})$
Modulation type	QPSK
Duplex mode	FDD
Active subcarriers per OFDM s	ymbol 1200
Null subcarriers per OFDM sy	rmbol 848
FFT size	2048
OFDM symbols per frame: total	active 120 83
Closed-loop transmission sch	eme Interference-aware PRB allocation
ADC sampling frequency (M	Hz) 61.44
Baseband sampling frequency ((MHz) 30.72
RF band (GHz)	2.6
IF (MHz)	46.08
Tested channel model	ITU Ped. B (up to 3 km/h)

3GPP LTE (Rel. 9; FDD)

OFDM symbols are organized in Physical Resource Blocks (PRBs) Nº of PRBS depends on BW → 20 MHz = 100 PRBs Slot = 6 OFDM symbols Subframe = 2 slots Frame = 10 subframes RSs found in one of every 3 **OFDM** symbols 4 predefined values $\rightarrow \pm \frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}}$

Considered SIR values

 3GPP suburban deployment of LTE femtocells → pathloss modelling of 3 DL signals:


(1) macro BS \rightarrow macro UE (2) femto BS \rightarrow femto UE (2) femto BS \rightarrow femto UE

(3) femto BS \rightarrow macro UE

• SIR

- ratio between (1) and (3)
- range from 12 to 20 dB

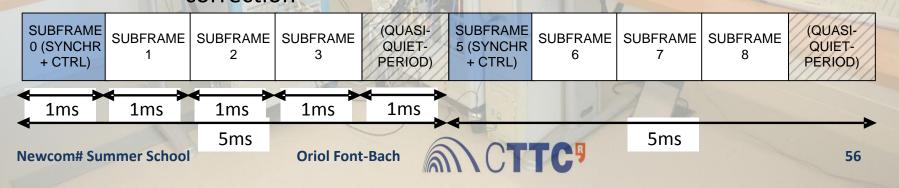
Simulation assumptions and parameters for FDD HeNB RF requirements, 3GPP TSG RAN WG4 R4-092042.

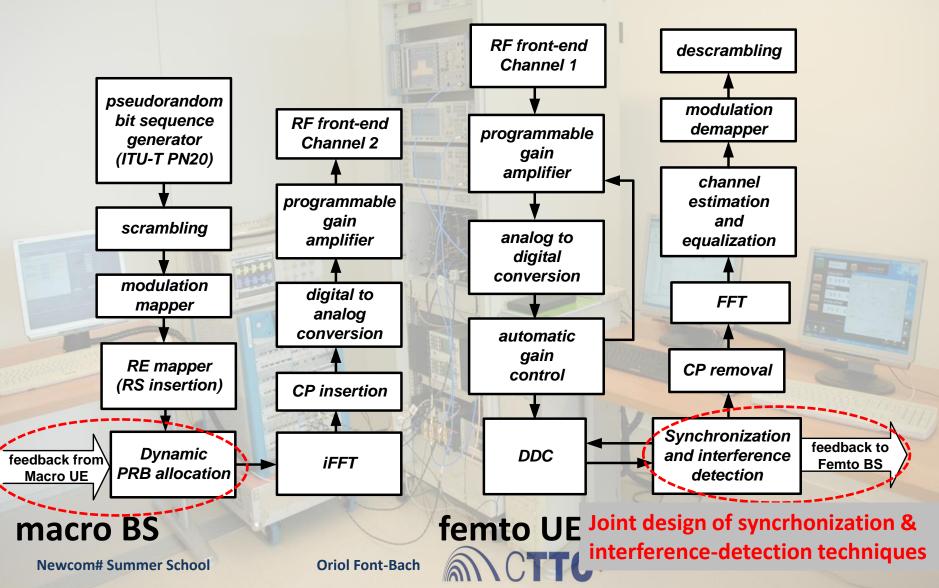
Interference-management algorithm

- Distributed ICIC algorithm → Victim User Aware Soft Frequency Reuse in macrocell/femtocell HetNets
 - Available BW is divided in N sub-bands
 - Instantaneous channel conditions of macro UE are exploited to adapt femto DL transmission
 - <u>Objective</u>: avoid interfering primary communication , while deactivating least #sub-bands in secondary DL communication

M. Shariat, A. u. Quddus, M. Bennis, Z. Bharucha, M. Lalam, M. Maqbool, S. Mayrargue, C. Kosta, A. De Domenico, E. Calvanese-Strinati, R. Mahapatra, C. H. M. de Lima and S. Uygungelen, "Promising Interference and Radio Management Techniques for Indoor Standalone Femtocells", *Deliverable D3.2, ICT 248523 FP7 Broadband Evolved FEMTO Network (BeFEMTO) Project,* Jun. 2012.

Scaling the scenario to fit the proofof-concept (I)


- Baseline interference-management algorithm
 - 1 macro BS-UE pair & 1 femto BS-UE pair
 - 20 MHz BW → two 10 MHz bands
 - 4 pre-defined femto PRB allocation cases


Scaling the scenario to fit the proofof-concept (II)

- PHY-layer specifications
 - Point-to-point DL communication
 - Emulated UL
 real-time intra-FPGA link
 - Fixed frame format
 - 10 ms radio frame divided in two 5-ms, separated by quasi-quiet periods (i.e., no data, only RSs)
 - facilitate vital DFE processes

 gain adjustment, CFO correction

System modelling (I)

System modelling (II)

Received signal model (considering the utilization of GEDOMIS[®]):

$$\begin{split} c(t) = \Re\{x(t) \cdot e^{j2\pi(f_{IF} + \Delta f)t}\} + \Re\{u(t) \cdot e^{j2\pi(f_{IF} + \Delta f_u)t}\} + A + \\ &+ B \cdot \cos(2\pi(f_{IF} + \Delta f)t + \varphi) + w(t), \end{split}$$

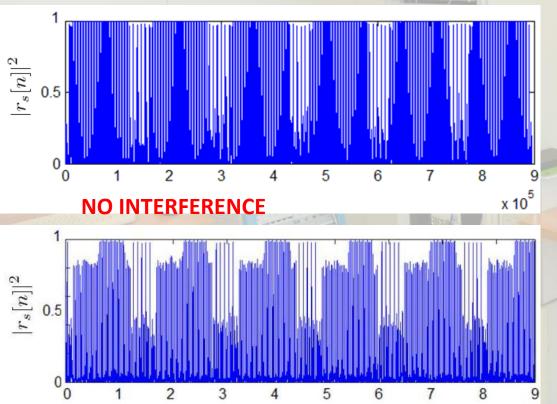
- x(t): useful part of received baseband signal
- u(t): (asynchronous) interference signal
- $-f_{IF}$: IF (46.08 MHz)/ Δf : CFO / Δf_u : CFO interf.
- A: DC level introduced by baseband boards
- $B \cdot cos(2\pi (f_{IF} + \Delta f)t + \phi)$: unwanted in-band residual carrier \rightarrow LO coupling
- w(t): Gaussian noise

Synchronization/interferencedetection techniques (I)

- CP-based synchronization → cross-correlation exploiting the self-similarity of the received OFDM symbols due to CP:
 - 1. Far less complex implementation than technique based on PSS/SSS
 - Cross-correlation values can be opportunistically reused to detect interference → degradation directly related to SIR
 - Design favouring resource-reuse → required for its FPGA implementation!

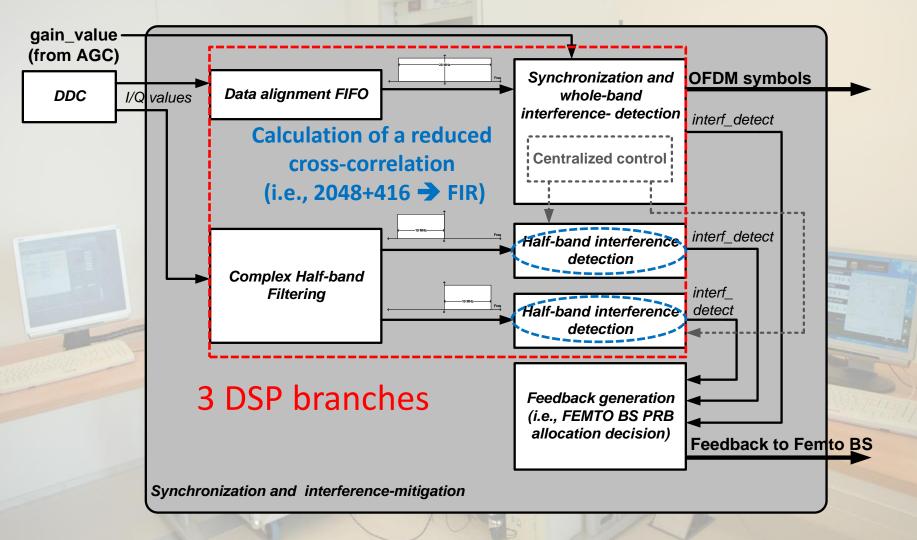
Synchronization/interferencedetection techniques (II)

 ITU pedestrian B channel → cross-correlation using a 2048+467 sample-window:


$$|r_s[n]|^2 = \frac{|\sum_{l=0}^{466} s^*[n+l] \cdot s[n+l+2048]|^2}{(\sum_{l=0}^{466} |s[n+l]|^2) \cdot (\sum_{l=0}^{466} |s[n+l+2048]|^2}$$

- Peak of |r_s[n]|² indicates position of CP → location of FFT-window
- Phase of r_s[n] can be used to estimate the phase shift of the received signal in the presence of CFO

Synchronization/interferencedetection techniques (III)


 Ideally (i.e., no noise and no interference) → peakamplitude of |r_s[n]|² =1, but...

SIR = 12 dB

... the cross-correlation profile is degraded in the presence of noise and interference.

General DFE architecture

Newcom# Summer School

Interference-detection algorithm

 Algorithm applied to each 5-ms frame → decides which band(s) are interfered

Algorithm 1

```
if wholeband_detection == 0 then
```

```
decision = no interference;
```

else

```
if low_10MHz_band_detection == 1 and high_10MHz_band_detection == 0 then decision = interference detected in the low 10 MHz band;
```

else if low_10MHz_band_detection == 0 and high_10MHz_band_detection == 1 then decision = interference detected in the high 10 MHz band;

else

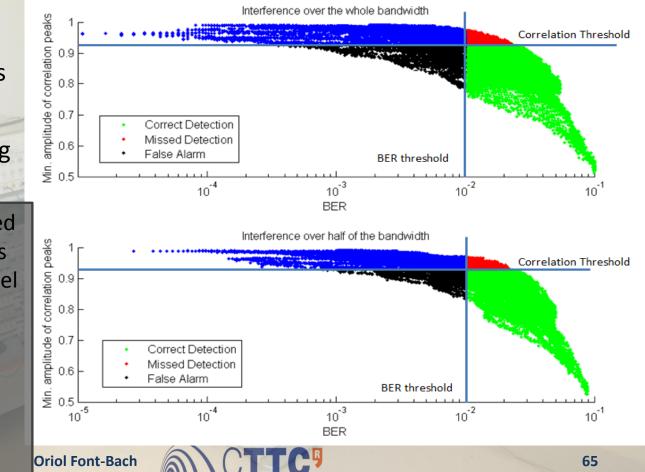
decision = interference detected in the entire bandwidth;

end if

end if

How is interference detected?

- Amount of degradation is directly related to power of received interference → presence of interference can be detected by defining a trheshold (i.e., peak-value below threshold = interference)
- Threshold definition aims at fulfilling a KPI:
 - Probability that raw/uncoded BER is below 10⁻²
 <u>must be above 0.8</u> (conditioned on the fact that interference is detected)



Thresholds definition (I)

- Exhaustive MATLAB simulations
- <u>Step 1</u>) all-synthetic signals
- Step 2)

data recorded using GEDOMIS

- 1. load MATLAB-generated BSs' I/Q vectors to VSGs
- 2. configuration of channel emulator
- real-time signal reception & data capturing
- 4. off-line simulation of NewCom#SummerSchool

Thresholds definition (II)

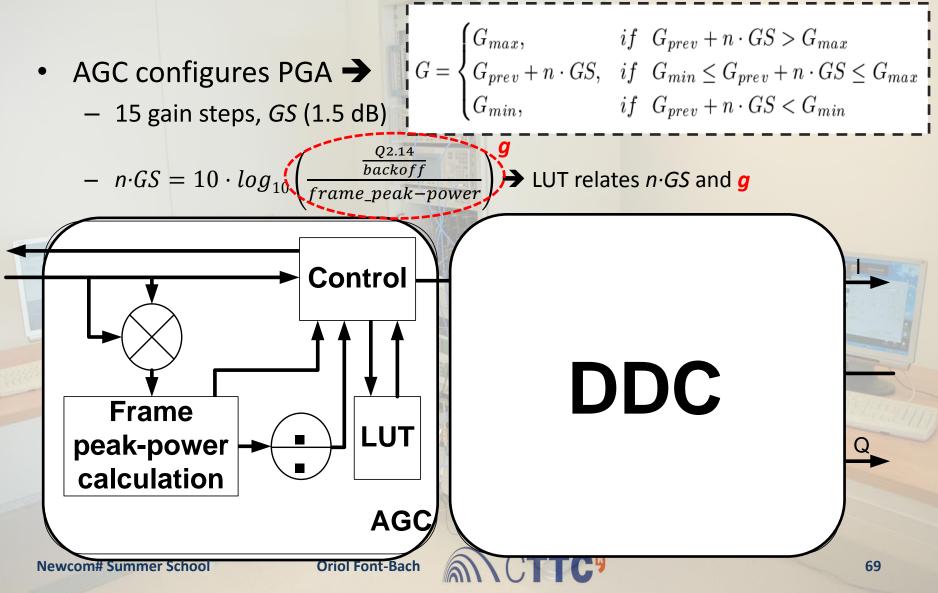
Threshold of main	Interference over the whole bandwidth		Interference over half of the bandwidth		
branch	Prob. of detection	Prob. of false alarm	Prob. of detection	Prob. of false alarm	
0.88	0.46	0.04	0.48	0.02	
0.89	0.53	0.05	0.56	0.03	
0.90	0.60	0.07	0.63	0.04	
0.91	0.68	0.09	0.71	0.06	
0.92	0.77	0.12	0.81	0.09	
0.93	0.87	0.17	0.89	0.15	
0.94	0.93	0.26	0.95	0.25	
				and a second	

	Interference over the whole bandwidth		ndwidth Interference over half of the bandwidth	
Threshold of secondary branch	Prob. of detection	Prob. of false alarm	Prob. of detection	Prob. of false alarm
0.88	0.37	0.04	0.73	0.11
0.89	0.43	0.05	0.78	0.13
0.90	0.49	0.06	0.83	0.18
0.91	0.56	0.08	0.88	0.24
0.92	0.64	0.10	0.92	0.31
0.93	0.73	0.14	0.95	0.39
0.94	0.82	0.19	0.98	0.49

7. RTL design

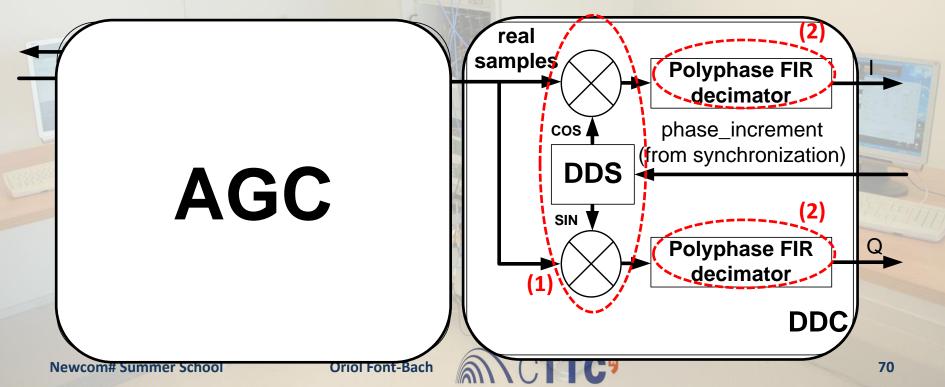
Newcom# Summer School

Oriol Font-Bach



Extended DFE

- The focus is set on the interference-aware DFE of the macro UE
 - It is one of the most complex processing blocks in the PHY-layer of the presented system
 - It has a critical impact on the performance of the whole interference-management scheme

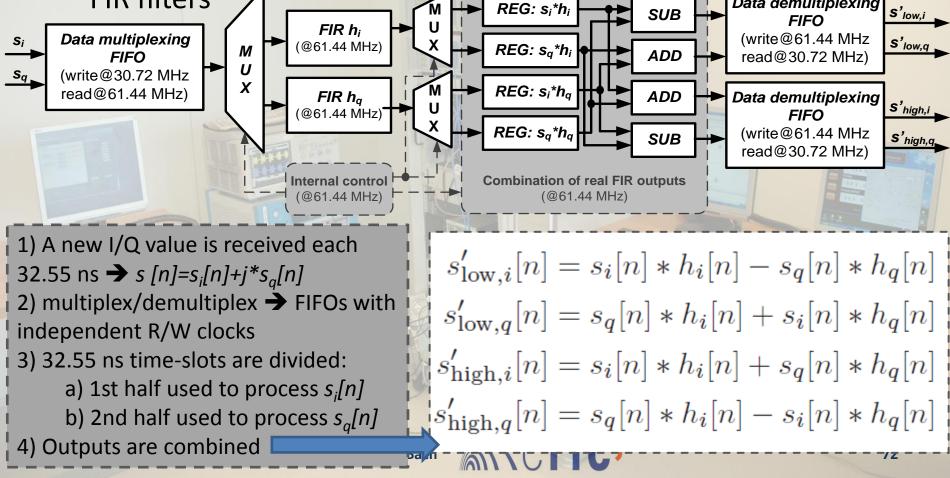


AGC and DDC blocks (I)

AGC and DDC blocks (II)

- DDC (using various Xilinx IP cores):
 - (1) frequency translation
 - (2) I/Q components extraction + decimation
 - MATLAB FDA tool

Hardware-efficient filtering stage (I)


- Xilinx FIR filter IP core
 - Direct link to MATLAB FDAtool → 51 18-bit complex-valued symmetric coefficients
 - … but only accepts real-valued coefficients!
 - A single filter requires a large amount of DSP and regular FPGA slices... we would need 4!
- Design exploits fact that the <u>coefficients</u> of the required filters are the <u>complex</u> conjugate of each other: $h_{low}[n] = h_i[n] + j \cdot h_q[n]$

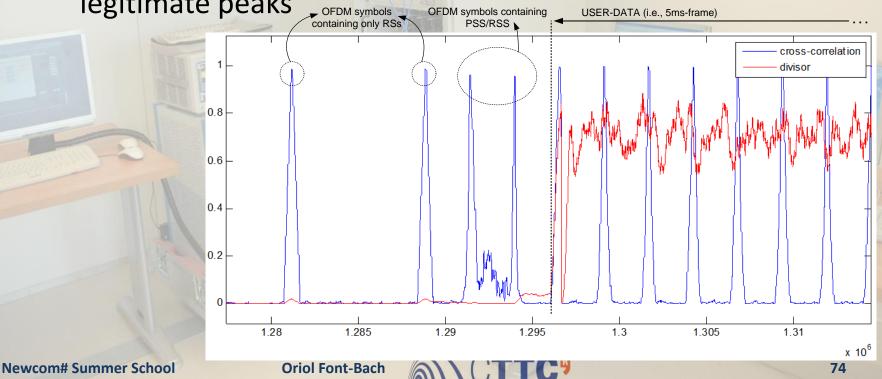
 $h_{\text{high}}[n] = h_i[n] - j \cdot h_q[n]$

Hardware-efficient filtering stage (II)

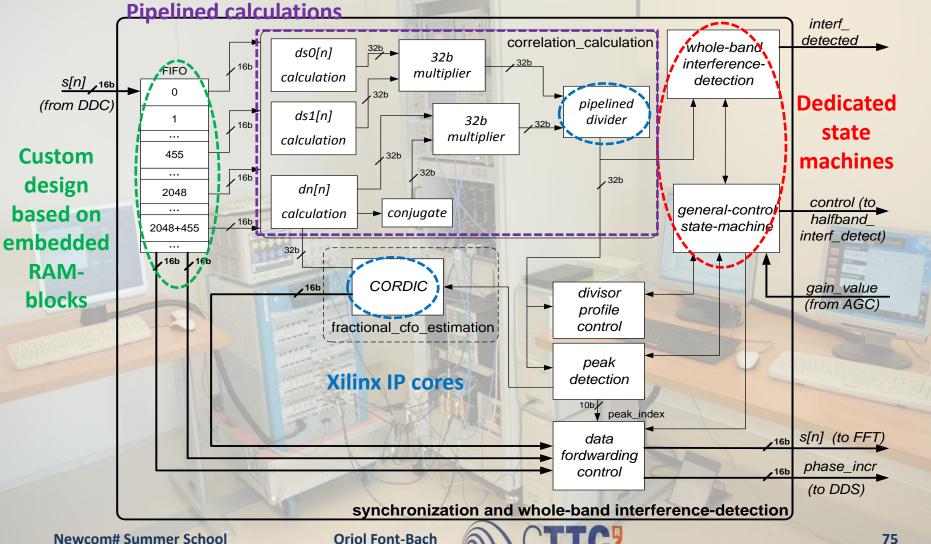
• Resource-sharing pipelined architecture, using two 2-channel

Joint synchrozation/interferencedetection (I)

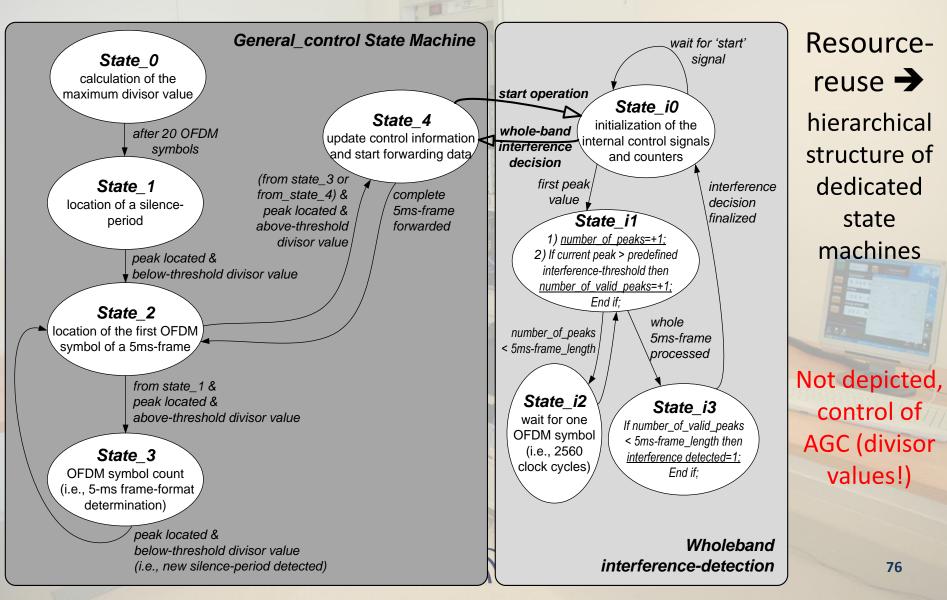
RTL-optimized calculation of cross-correlation


 $|r_s[n]|^2 = \frac{|dn[n]|^2}{ds0[n] \cdot ds1[n]} \longrightarrow dn[n+1] = \begin{cases} dn[n] + s^*[n+467] \cdot s[n+2048+467] \\ \text{if } n \le 467 \\ dn[n] - s^*[n] \cdot s[n+2048] \\ + s^*[n+467] \cdot s[n+2048+467] \\ \text{if } n > 467, \end{cases}$

Only four samples need to be introduced to the already calculated correlation, each clock cycle
 DSP48-slice savings!

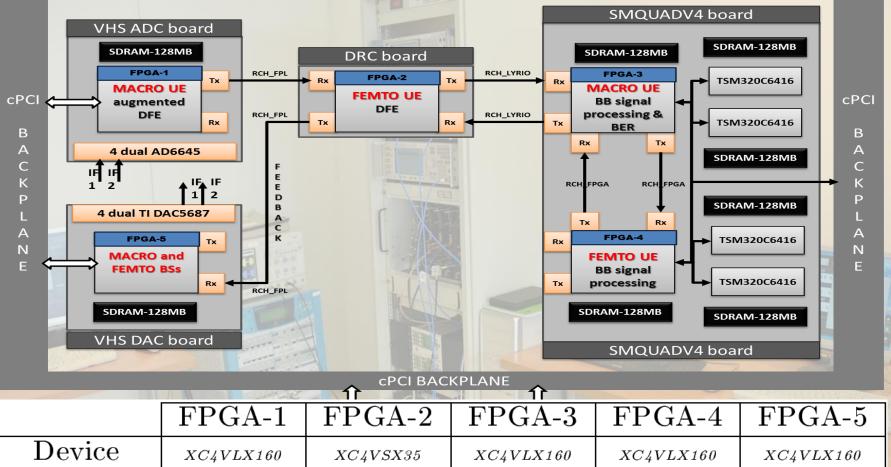


Joint synchrozation/interferencedetection (II)


- Peak-detection based on triggering threshold
 - Because of RSs, peaks can be also found in the quasi-quiet periods → values of dsO[n]·ds1[n] are used to determine legitimate peaks

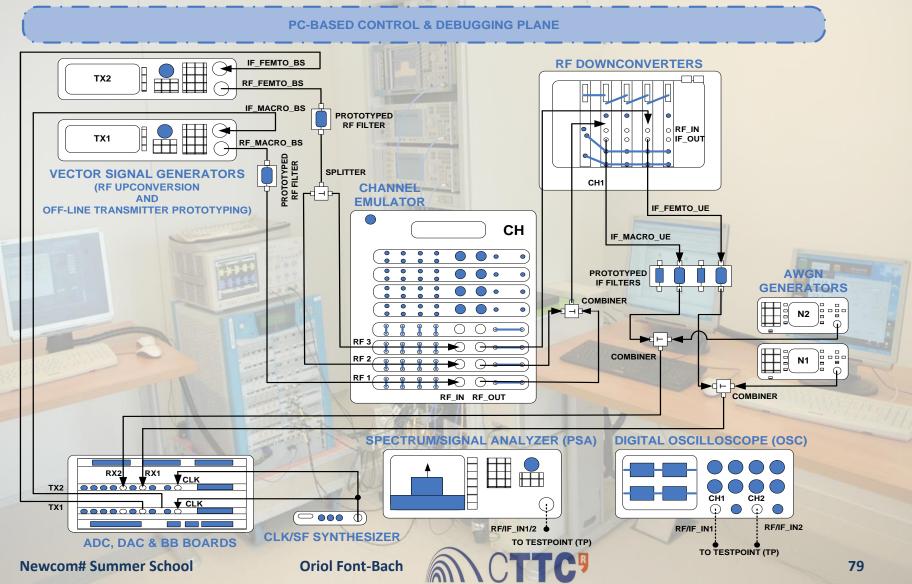
Joint synchrozation/interferencedetection (III)

Centralized control unit


8. Validation and results using the GEDOMIS® testbed

Newcom# Summer School

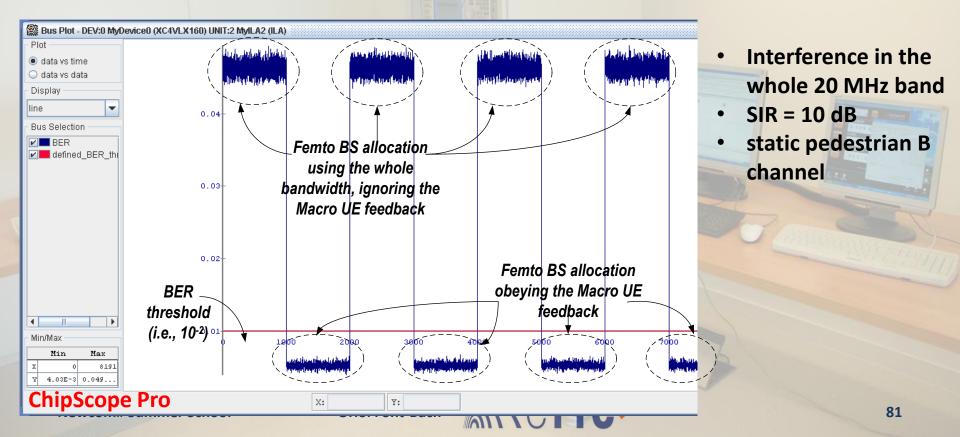
Oriol Font-Bach



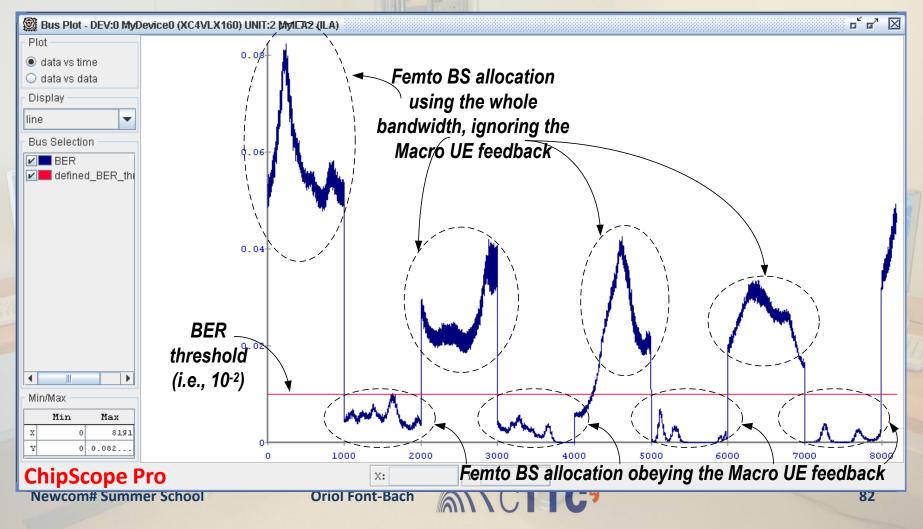
Multi-FPGA implementation

Device	XC4VLX160	XC4VSX35	XC4VLX160	XC4VLX160	XC4VLX160
Slices	67%	44%	33%	36%	27%
DSP48s	90%	23%	94%	52%	78%
RAMB16s	78%	35%	62%	78%	82%

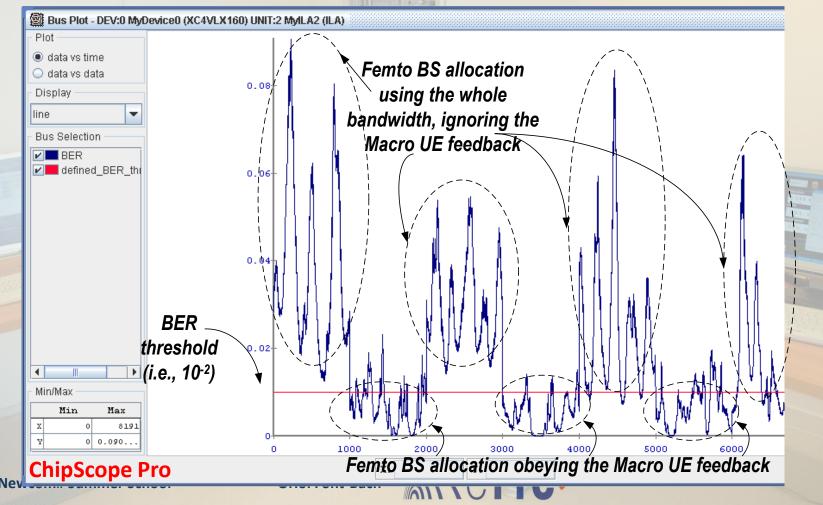
Setup of GEDOMIS®



Visualization of the cross-correlation


Visualization of the BER (I)

- Two transmission modes are defined for the Femto BS
 - According to feedback or ignoring it (i.e., whole 20 MHz band transmission)
 - Transmission mode changes every N seconds
- Real-time calculation of macro UE VER
 - Replication of macro BS' PRBS generator


Visualization of the BER (II)

Interference in the low 10 MHz band, SIR = 12 dB, low mobility pedestiran B channel (i.e., 0.2 km/h)

Visualization of the BER (III)

Interference in the high 10 MHz band, SIR = 14 dB, mobile pedestrian B channel (i.e., 3 km/h)

Development team

- Signal processing and algorithmic

 Antonio Pascual (UPC), Miquel Payaró (CTTC)
- High-level modelling and simulations
 - Luís Blanco & Jordi Serra (CTTC), Marc Molina (UPC)
- RTL design and VHDL coding
 - Pepe Rubio & Oriol Font (CTTC)
- Laboratory setup and debugging
 - Nikolaos Bartzoudis & David López (CTTC)

Questions?

Oriol Font-Bach oriol.font@cttc.cat

Newcom# Summer School

MIN

CTTC